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Problem setting: RF plasma needle - 1 

•  Frequency: RF (13.56MHz) 
•  Voltage: 200-400 Vpkpk 

•  He flow rate: ~1 slpm (Red < 100) 
•  Power consumption: ~1 W  
•  Distance to sample: 1-5 mm 

E. Stoffels, et al., Plasma Sources Sci. Tehcnol. 11 (2002) 383. 
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J.Goree, et al, J.Phys.D. 39 3479 (2006) and IEEE Trans.Plasma Sci. 34, 1317 (2006) 
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Problem setting: RF plasma needle - 2 
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Solver and computational environment 

COMSOL Multiphysics  
•  FEM (finite element method) solver 
•  By Comsol: www.comsol.com 

MATLAB 
•  Custom control of COMSOL 
•  By MathWroks: www.mathworks.com 

Solver 

•  Desktop workstations  
•  CPU: AMD Opteron (4 quad cores) 
•  Memory: 8-16 GB 
•  OS: Open Suse 
•  CPU time: from ~10 min/RF cycle (1D model) to ~10 hr/RF cycle (2D model) 

Computational environment 
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Model description: neutral flow domain 
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Basis function: Lagrange-quadratic 
Number of meshes: ~10,000 
Number of DOF: ~250,000 
Mesh size: 3-500 µm 



Model description: plasma domain 
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Plasma dynamics 
(mass conservation) 

(drift-diffusion) 

(electron energy) 

(Poisson’s equation) 
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(mass conservation) 

(momentum conservation) 

(energy conservation) 
He (~ 1m/s) 

air  

temperature 
velocity 

species density  
 ion momentum 

collisional heating 

Model description: governing equations 

Y. Sakyiama et al, Plasma Sources Sci. Tchnol. 18 (2009) 025022 



electron Boltzmann eq. 
(BOLSIG+) 

Simulation procedure: pre-processing 

Look-up tables 

cross section data 
He + e → He + e 

 → He* + e 
 → He+ + 2e 

reaction/transport rate const. 

k = f (ε) 
electron energy 

•  Constants/variables 

•  Geometry 

•  Mesh generation 

•  Governing equations 

•  Boundary conditions 

•  Initial conditions 

Initialization 
(COMSOL) 



ion momentum, collisional heating 

Simulation procedure: MATLAB script 

time dependent plasma dynamics  
for 10 RF cycles; ~100 ns 

(ne, ni, nn, E, ε) 

steady state neutral gas flow 
 (ρ, u, T) 

temperature 
gas velocity 
species concentration 

30-50 loops 

Call COMSOL  
time dependent solver 

Call COMSOL  
steady state solver 

MATLAB 

MATLAB 



Mole fraction of air (log scale) 

Y. Sakyiama et al, Plasma Sources Sci. Tchnol. 18 (2009) 025022 
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Coupling with gas flow: simulation results 
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Coupling with gas flow: comparison with experiment 



Plasma chemistry: model description 
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46 species negative particles:  e, O−, O2
−, O3

−, O4
−, H−, OH− 

positive particles:  He+, He2
+, N+, N2

+, N3
+, N4

+, O+, O2
+, O4

+,   
 NO+, N2O+, NO2

+, H+, OH+, H2O+, H3O+ 

neutrals:  He, He*, He2*, N, N*, N2, N2*, N2**,  
 O, O*, O2, O2*, O3, NO, N2O, NO2, NO3,  
 H, H2, OH, H2O, HO2, H2O2 

214 elementary reactions 

•  21 electron impact excitation/ionization/dissociation reactions 
•  20 Penning and associative ionization reactions 
•  26 electron recombination/attachment reactions 
•  65 charge transfer reactions 
•  51 ion recombination reactions 
•  31 neutral-neutral reactions 

Plasma chemistry: He/humid air chemistry 
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Plasma chemistry: simulation results  



1.0 slpm 

Y. Sakiyama, et al., Appl. Phys. Lett. 97 (2010) 151501. 

Plasma chemistry: comparison with experiment 

TALIF (two photon absorbed laser induced fluorescence) 
•  Collaboration with Ruhr-Universitat Bochum (Germany) 
•  Absolute density of O atom 

225 nm 844 nm 
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CFD-ACE+: ESI Group (http://www.esi-group.com/) 
•  general PDE solver 
•  plasma physics module available 

ANSYS Fluent: ANSYS Inc. (http://www.ansys.com/)  
•  general fluid dynamics solver  
•  applicable to low pressure CVD simulation 

COMSOL Multiphysics: Comsol, Inc. (http://www.comsol.com/) 
•  FE (finite element) solver 
•  ~20 pre-defined application modules from fluid dynamics to mechanics 
•  plasma module included in the latest version (after 4.1) 

SIGLO and SIPDP: Kinema Research (http://www.kinema.com/) 
•  plasma fluid solver in 1-D and 2-D from AC to RF 

Commercial software available for fluid modeling 



Advantages of commercial software 

•  Mesh generation for complicated geometries through GUI 

•  Easy to add multi-physics problems 

•  Hybrid simulation possible with MATLAB script 

•  Beneficial especially for non-professionals in numerical modeling 
(e.g. experimentalists) 

•  Saving time to write/debug simulation codes 

•  Sharing/exchanging models and results with others  



Disadvantages of commercial software 

•  No direct access to algorithm (“black box”) 

•  Non-full control of solvers (e.g. error control, tolerance) 

•  Limited options to advanced techniques (e.g. numerical diffusion) 

•  (Slightly) slower computational speed 

•  Need to learn how to use GUI/CUI 
(frequent version up is problematic…?) 

•  Commercial (license fee required) 
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Related publications using COMSOL/MATLAB 

•  E. Kawamura et al., Plasma Sources Sci. Technol. 20  (2011) 
035009. (2D hybrid fluid-analytical simulation) 

•  I. Lee et al., Plasma Sources Sci. Technol. 17 (2008) 015018.  
(2D EM-plasma coupling) 

•  C. Corr et al., J. Phys. D: Appl. Phys. 41 (2008) 185202. 
(2D inductively coupled Ar/Cl2 plasmas) 

•  Y. Kabouzi, et al., Phys. Rev. E 75 (2007) 016402. 
(surface wave-sustained plasmas) 

•  C.-C. Hsu et al., J. Phys. D 39 (2006) 3272. 
(Ar/O2/Cl2 inductively coupled plasmas) 
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Concluding Remarks 

•  Commercial software (COMSOL/MATLAB) is a powerful tool 
for modeling of low-temperature atmospheric pressure 
plasmas. 

•  Neutral gas flows and ROS/RNS play crucial roles in 
plasma-biomaterial interaction. 

Q. If you do not have a simulation code and need to run numerical 
simulations, are you going to write your own home-made code from 
scratch…? 
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