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Overview

Numerical Heating-Need to improved sub-grid
interpolation and time integrators

Resolving sub-grid forces through PPPM

Removing self-force associated with traditional
method

Future work
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Maxwell’s Dynamical Equations:

oD
VxE=—§ VxH=J+—
Subject to the With the definitions for
initial value constraints: anisotropic macroscopic media:
V-B=0 D =¢E J =6E
V:D=p B =pH

Relativistic Lorentz Force Law for
relativistic velocity u=vy:

@=1[E+WB'

Y

dt m ,




Surface Physics:
Bremsstrahlung
Thermal heating

Interaction region —— . . .
reflectors Impurlty diffusion

/Surface Chemistry\:
Electron emission

Physics on three time scales

AdSOI’pthD *During a RF pulse (ns)
Desorptlon ‘Between RF pulse (or long pulse) (ms)
Secondary particle *System thermalization time (s)
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\/ Problems Associated with PIC
4 Simulations

* Particle-in-Cell (PIC) has been used for many years to
accurately simulate plasmas.

— Core technology within ICEPIC
* Nominally this technique is second order in space and
time if:

— One resolves the Debye length of the system thus resulting in
smooth fields over the grids

— One resolves the time signal with respect to the plasma frequency

— One resolves the statistics of the plasma by having enough
particles within a cell

* If not, plasma gains energy (heating) and produces
inaccurate results
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"Under-Resolved Spatial Resolution
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* The fields are represented on a grid within a
simulation

— Particles are forced by fields on that grid

* Particles feel realistic forces from particles outside
their local grid cell

* Local interactions are under
predicted.

* Left — green curve represents .
physical force on two S —
particles, red is PIC force. |

* Resolve by providing a
correction to forces locally ey




\, ¢ Particle-Particle vs Particle-Grid rN
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o Heating Rates

* As can be seen computing all particle-particle
interactions heats less than going through a grid

* 256x256 grid, 4K particles, Neumann boundaries
around the full domain

* Boundary integral method for particle-particle
boundary conditions
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\/ Particle-Particle-Particle-Mesh

PPPM

e Suppose one needs to compute the force on particles
in cell j.

— One has the fields on the grid highlighted in green

— Standard PIC just interpolates from the green mesh
to the particles

* PPPM subtracts the fields on the grid locally due to
particles within the yellow domain

* Local forces are then re-added

using Green'’s function (1/r law)




AdvantageslProbIems with PPPM

The work to solve this problem is still order N where N
is the number of particles

Accurately resolves local Coulomb collisions

Particles don’t “See” the grid and have associated grid
heating — No Debye length issues.

If the subtraction of local effects does not exactly
cancel out what the grid “thinks” the force should be
particles can push themselves — self force.

With large, discontinuous forces integrators are much
more critical — More integration errors

Added complexity

Hard to extend to electromagnetics *



Nz Scheme for PPPM
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* Steps in electrostatic PIC/PPPM
— Map charge to grid, typically linear weighting
— Solve Poisson’s equation
— Subtract local particles forces from grid
— Interpolate force from grid to particle
— Add in local particle-particle forces
* No self force assuming:
— Charge mapping and interpolation are symmetric

— Subtraction removes all the local contribution to the
force

1



Nz Traditional PPPM
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* Traditional PPPM
— Standard linear weighting of charge to the grid
— 2"d or 4th order Poisson solve

— Green’s function for removing force

Div(E) from charge

\ /

N

V-E=

8(dx +{)°
m(dx + 20)(3dx + 20)(5dx* + 8dx{ + 4(7) Charge removed from field
Large residual field 12
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Better Particle Weighting Field

Compute electrostatic field on Yee edges using
Green’s function N ol v0)
EG(LH_)ZQ Y = Yo

2 Are(r? + 6)

Make irrotational
Z E, (z +%,jv) +E, (z 41, +%) _E, (z +%,j + 1)— E, (z’,j +%) —0

Take the discrete divergence, assign to charge

£o(1=30) o+ 1) +Eo i~ D) - Ea 17+)

)\

p(i,j) = —
Solve Poisson’s equation v20n (i) = P/
Compute discrete E field , (i.- j) - (i + 1,]('1) W)
(i+5, -

This produces an E, identical to E; therefore local
forces can be subtracted

13
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* Two steps are computationally intractable

\\/lmplementation of Better Weighting
4

— The weighting extends beyond a local range

— Making fields irrotational is expensive
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e Solution

— Have a finite cutoff radius

* One cell in picture to right

— Fields on green edges

— Densities at nodes touching yellow region

— Projection to non-rotational space is a onetime

matrix inversion and fast multiplication

14
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\ Sub-Grid Resolution
/059

* Plot shows the potential grid and the sub-grid
resolution provided by the PPPM

16



\ Heating Results
s

* Kinetic Energy for four method with
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Electromagnetic PPPM

* Extending the algorithm to solve electromagnetics

— Break standard current weighting scheme into two
parts

* Rotational part and electrostatic part

— Replace electrostatic part with modified charge
weighting, and compute current 7= a%t

— Local subtraction should still cancel out
electrostatic fields

— Electromagnetic fields still transmitted through the
grid

18
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Summary
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The grid causes false heating of the particles

Performing the particle-particle calculations reduces
the amount of heating

PPPM is designed to resolve this issue, however,
suffers from a self force

Modified charge weighting removes the self force

If weighting scheme is made compact through
truncation much of the self force is removed
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