Iterative and direct linear solvers in fully implicit magnetic reconnection
simulations with inexact Newton methods
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MATHEMATICAL MODEL: FOUR-FIELD EXTENDED MIHD EQUATIONS NUMERICAL EXPERIMENTS: SCALABILITY STUDIES
The reduced two-fluid MHD equations in two-dimensions in the limit of zero electron mass can be . wp [ Mg et __ Average MPI messages
written as: * the ion velocity: V=VoxZz+Vz £, , ﬁ
GV V VO = [Viyyluvie +the out ot plane conrant decany o9 | P
A Y T I :
* y: 1 I perot cores 0420484056 G eerarcones (ORI 0%0 ot cones o000
%w +‘7'V1:U =di[¢»3]+ nvzw_vv“-w e the coI.Iisi(?nleS? ion skin depth: di _ Sumuﬂ_f o Three iterative solvers (tfj_lu, asm_ilu, asT_Iu) anij the diiect.solver
e the fluid viscosity: u (SuperLU) for a 256X256 size problem for di=0.2, dt=0.5, nt=10;
%B +V-VB = [V,l/}]+dl.[v 21,0,1/1 +T[V23—VV4B « the hyper-resistivity (or electron viscosity): V N * SuplerLU and bj_lu have lower MPI message lengths;

e the hyper-viscosity: /
* the computational domain Q=[0,0.5L,]x[0,0.5L,]: ¥ iz v
the first quadrant of the physical domain (finite diff.,
(anti-)symmetric fields);

* boundary conditions: Dirichlet at the top, anti-

symmetric in ¥ B and symmetric in ¥,V at other three
boundaries;

e initial conditions: a Harris equilibrium and Qs y
perturbation combination for ¥, and other three fields ‘ . -2
are zeros

T * the communication percentage of SuperLU is over half of the wall time
g and increases as the number of cores increases;
2 ¢ |[PM and PETSc profiling tools are used;
) * the SuperLU uses sequential ordering algorithm and symbolic

factorization, and this time doesn't decrease with increasing # of cores.
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e For a very challenge case where the skin depth number di=1.0, the
problem size is 512X512, only asm_|u and SuperLU provide converged
= solutions;

Y&, n,0) =%1n cosh 21 + cos ky cos ky s

2 2 Four fields and the negative out-of-plane current: top (t=0), bottom
k=%, ky=Z

XLy Y _Ty’ el =28,y =2 (t=40): =005, 4 =005,d, =10. « the wall time does not decrease when number of cores increases;
ey  the 70% MPI time is MPI_Wait for SuperLU;
* the communication percentage of SuperLU is over half of the wall
NUMERICAL DIFFICULTY: LARGER VALUE OF SKIN DEPTH w W H time and increases as the number of cores increases;
The MHD system applied to strongly magnehzgd p!asma is inherently |II-cond.|t|c'Jned be.ca.use the.re lin. solver\dt 0.2 04 0.6 0.8 I . e nevton iteration numbers do not
are several different wave types with greatly differing wave speeds and polarizaiton. This is especially asm_ilu 4.6]245.6 4.8|388.7 4.9]497.6 4.9|615.7 4.9|676.9 increases as dt increases;
troublesome when the collisionless ion skin depth is large so that the Whistler waves, which cause the asm_lu  4.6]245.2 4.7|372.5 4.9]485.2 4.9]559.8 4.9|628.9 ° tlhe '"Tear“eraﬁ°;‘trf”mbers o2 e
. . . solvers increase as dt increases;
fast reconnection, dominate the physics. o SuperlU 25|25 3.1|31 29]29 3.1[3.1 29129 . the nonlinear/linear iteration numbers
— grid size: 256X256, dt=0.5, nt=80. grid size: 512X512, dt=0.2, nt=200. The average nonlinear and linear iteration numbers for 512X512 (o not increase as dt increases for
linearsolver\d; 0.0 0.2 0.4 0.6 0.8 1.0 linearsolver\d; 0.0 0.2 0.4 0.6 0.8 1.0 grid size problem per time step, where di=0.2, and =0~ 40. SuperLu.
bilu ©O O X X X X bj_ilu X X X X X X
SRR 72 b v b v O b’,—l SIMULATION ARCHITECTURE: NERSC CRAY XE6 “HOPPER”
— LIt LI AR R AR * 6384 nodes, 24 cores per node (153,216 total cores)
asmilu v/ /X X X asm_ilu S /XXX « 2 twelve-core AMD ‘MagnyCours’ 2.1 GHz processors per node
asm_lu v v v 7/ 7/ asm_lu v /v v/ (NUMA)
Superl v V V V / V/ SuperLU /S /S * 32 GB DDR3 1333 MHz memory per node (6000 nodes), 64 GB DDR3
— Five different linear solvers are tested for different skin depth from 0.0 to 1.0 in 256X256 and 1333 MHz memory per node (384 nodes)
- - - 512X512 problem size: iterative GMRES solvers (bj_ilu, bj_Iu, asm_ilu, asm_lu) and direct solver ¢ 1.28 Petaflop/s for the entire machine
The‘m|d—p!ar-1e current densnY vs. time: (SuperLU). As the skin depth increases, iterative solvers need a good preconditioner to ¢ 6 MB L3 cache shared between 6 cores on the ‘MagnyCours’
vertical axis is =/ along the mid-plane y=0, converge, while the direct solver converges for all cases. The block Jacobi (bj) has not applied processor
and the horizontal axis is time =0 ~ 40. thfe freedom to vary the bl_ock size, which would enhance the linear convergence for the higher « 4 DDR3 1333 MHz memory channels per twelve-core ‘MagnyCours’ N
Top: d.=0.0, bottom:d.=1.0. skin depth case. The additive Schwarz methods (asm) has overlap numbers n>1.
l l processor MagnyCours processor



