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ABSTRACT

We present in this work, various applications of the IGA in Plasma Physics and Electromagnetism. We also introduce the new
Fast-IGA approach, that enables to reduce considerably the time spent in solving linear systems, involved in IGA, for a class
of problems.

IsoGeometric Analysis

The underlying idea behind the IsoGeometric Analysis (IGA), developed recently by Hughes [8], is to use the functions (B-
splines/NURBS) that describe the geometry in order to approach the numerical solution of pdes.
Compared to the standard FEM, IGA posses many advantages:

• the geometry description remains the same while refining. This reduces the communication between the CAD and FEM
modules,

• reduces the number of degrees of freedom,

• as based on tensor products, refinement is very cheap,

• IGA provides smoother solutions.

Another important feature of IGA, is that can be used in either its isoparametric version (with the approximation power of
curves, using B-splines/NURBS), or in its p-FEM version by using splines of higher order.

B-splines

Let T = (ti)16i6N+k be a non-decreasing sequence of knots.
The j-th B-Spline of order k is defined by the recurrence relation:

Nk
j = wkjN

k−1
j + (1− wkj+1)N

k−1
j+1 where wkj (x) =

x− tj

tj+k−1 − tj
N1
j (x) = χ[tj,tj+1[(x).

We note some important properties of a B-splines basis:

• B-splines are piecewise polynomial of degree p = k − 1

• Positivity

• Compact support; the support of Nk
j is contained in[

tj, .., tj+k
]

• Partition of unity :
∑N
i=1N

k
i (x) = 1, ∀x ∈ R

• Local linear independence

• If a knot t has a multiplicity m then the B-spline is C(p−m) at
t

Figure 1: Illustration of h-refinement with p = 2, T = {000, 111}, T =
{000, 1
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Figure 2: A B-spline curve and its control points, T = {000 1
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NURBS

Let ω = (ωi)16i6N be a sequence of non-negative reals. The NURBS functions are defined by a projective transformation:
The i-th NURBS of order k associated to the knot vector T and the weights ω, is defined by

Rki =
ωiN

k
i∑N

j=1 ωjN
k
j

.

Using NURBS curves, we can exactly model all conics. For example, a circle can be defined with 9 control points.

Maxwell time domain

We developed in [2] a new formulation of the exact sequence of Finite Element spaces based on splines, introduced by Buffa
et al. [1], having the same properties as the Whitney Finite Element spaces traditionally used for the Finite Element solution
of Maxwell’s equations. As with the Whitney elements, one of Ampere’s or Faraday’s law can be discretized with a relation
between the spline coefficients of the electric and magnetic fields independent of the topology of the mesh. The metric comes
in through a discrete Finite Element Hodge operator which appears as the mass matrix involved in the other equation. This
method allows us to inverse only one matrix at each time step.
using a H-div formulation, the following function spaces are involved,

curl div
H1(P) −→ H(div,P) −→ L2(P)

∪ ∪ ∪
V −→ Wdiv −→ X

= = =

Sp,p
α,α −→ Sp,p−1

α,α−1
× Sp−1,p

α−1,α −→ Sp−1,p−1

α−1,α−1

(1)

The key point of our method is the use of the recursion formula for the derivatives:

Nk
i
′
(t) = Dk

i (t)−Dk
i+1(t), where Dk

i = k
Nk−1
i (t)

ti+k − ti
(2)

which leads to the finite spaces,

V = span

{
N
p
i (ξ)N

p
j (η)

}
, Wdiv = span

{(
N
p
i (ξ)D

p
j (η)

0

)
,

(
0

D
p
i (ξ)N

p
j (η)

)}
, X = span

{
D
p
i (ξ)D

p
j (η)

}
. (3)

this leads to the linear system, with R the incidence matrix, which does only depend on topology and not on geometry,

{
ė = Rh

MV ḣ = −KTe
(4)

For time discretization, we used a classical and 4th order Leap Frog scheme. Next, we show the CFL numbers in function of
the splines degree. The expected theoretical convergence order are achieved in this case.

LF2Th LF2num LF4Th LF4num

p = 2 0.3044 0.3056 0.8676 0.8720
p = 3 0.2058 0.1840 0.5866 0.5872
p = 4 0.1496 0.1520 0.4265 0.4272
p = 5 0.1151 0.1168 0.3281 0.3280

Table 1: CFL numbers (theoretical and numerical values),
for splines of degree p = 2, · · · , 5

Figure 3: Square test: theL2 norm error for (top) the mag-
netic field, (bottom) the electric field

Resistive MHD

We studied the current hole problem: 



∂tψ = [ψ, φ] + η (J − Jc) ,

∂tω = [ω, φ] + [ψ, J ] + ν∆ω,

J = ∆ψ,

∆φ = ω.

Using a semi-implicit time scheme, the discretization of the incompressible MHD can be written as:

A0
ν[ω

n+1] =M0[ωn] + ∆tCV0
h
[Jn, ψn] + ∆tCV0

h
[φn, ωn],

S0[φn+1] = −M0[ωn+1],

A0
η[ψ

n+1] =M0[ψn] + ∆tCV0
h
[ψn, φn+1]− η∆tM0[Jc],

M0[Jn+1] = −S0[ψn+1].

The following results were obtained using quadratic NURBS, a grid of 64× 64 meshes and a time step dt = 0.1.

Figure 4: Evolution of the current density as a function of time, using
ν = 10−6 and η = 10−5.

Figure 5: Kinetic energy of the plasma for ν = 10−6 and η = 10−5.

Figure 6: The grow rate γ as a function of the resistivity η. The dashed

line indicates the η
1
3 asymptote.

Quasi-Neutrality equation

Linearization around the equilibrium density n0 together with the approximation B ≈ B0 are usually performed; these simpli-
fications provide only a radial dependence for the anisotropic factor

−
1

B2
0

∇⊥ · (n0∇⊥φ) +
n0

Te
(φ− 〈φ〉) = n̄i − n0. (5)

Test case : Chaotic solution We test our solver on a chaotic solution on a polar coordinate Laplacian −∇2φ = n. This analytic
solution takes the form

φ(r, θ) =


sin(2πξ) + ǫ

∑

M

BM sin(2πMξ)


∑

l

Al cos(lθ + Θl), (6)

where 0 ≤ ǫ ≤ 1, ξ = r−rmin

rmax−rmin
, Al, BM and Θl

2π are random numbers which range between 0 and 1, with |M |, |l| ≤ 40.

Spline degree dof L2 error norm

2 17408 7.20 10−3

3 18060 1.07 10−3

4 18720 1.71 10−4

5 19388 2.84 10−5

6 20064 4.81 10−6

7 20748 1.67 10−6

Table 2: Chaotic solution: Number of degree of freedom
and L2 norm of the error for each spline degree. Used
parameters are ǫ = 0.4, rmin = 0.2 and rmax = 0.4

Figure 7: (left) the numerical solution, with l = m = 10
and p = 4, (right) the difference u − uh for a turbulence
test in the tokamak model, with l = m = 2 and p = 4.

The Fast-IGA approach

We consider the classical linear system obtained after discretizationMU = F . The next strategy works for evolution problem’s,
elliptic equations (under some assumptions), it can be extended to more general problems (but still under some restrictive
assumptions).

The case of annular domains

We consider here, annular domain Ω ⊂ R
2, defined between

an interior curve Ci and an exterior curve Ce, where both Ce and
Ci must be periodic, and defined with the same uniform knot
sequence (c.f. figure 8). We consider the following mapping
F(ξ, η) = (1− ξ)Ci(η)+ ξCe(η), that maps a patch onto Ω. There-
fore, the jacobian can be written in the form:

det(JF) = u1(ξ)v1(η) + u2(ξ)v2(η)

In this case, the mass matrix can be written as a Kronecker ten-
sor product, M = M1

ξ ⊗M1
η +M2

ξ ⊗M2
η . Thus a linear system

MU = F , can be solved as

M1
ξvec

−1UM1
η +M2

ξvec
−1UM2

η = vec−1F (7)

where both M1
η and M2

η are circulant and can be diagonalized
in the same basis (Fourier modes). To solve eq ( 8 ), one needs

to solve theNη linear 1D linear systems :
(
λ1jM

1
ξ + λ2jM

2
ξ

)
Ûj =

F̂j, where M1
η = PΛ1P

⋆ and M2
η = PΛ2P

⋆, with Λ1 = diag{λ1j}

and Λ2 = diag{λ2j}. The cost of this method is N log(N).
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Figure 8: The interior and exterior curves are defined using the same knot
vector T = {0 1 · · · 13 14}, the interior curve is defined using the control
polygon P i
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Initializing Solving
p FIGA SPLU FIGA SPLU
1 0.021 3.38 0.074 0.067
2 0.043 31.40 0.076 0.967
3 0.052 197.31 0.075 3.505
4 0.060 330.28 0.075 16.070
5 0.069 415.63 0.077 32.852

Figure 9: CPU-time, in seconds, spent in solving (left) and initializing
(right) the linear system, using the Fast IGA, compared to SuperLU. Test
done on a grid 256× 256

Current Research and perspectives

PyIGA Library

PyIGA is a library written in Fortran and Python. Using PyIGA,
you can solve scalar or vectorial (system of) pde’s,

• assemble differential operators,

• Input (XML files) and Output (SILO/HDF5 files), possible
use of Xdmf,

• use existing Python-modules,

• minimum communication between the user and the library.

Current Research

• Semi-Lagrangian schemes using NURBS to solve the Vlasov-
equation, [4]

• Coupling PIC method using IGA, [5]

• Numerical results for the Fast-IGA, and extend it to the 3D
case.
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