
wGUI: A Web-Based Graphical User InterfacewGUI: A Web-Based Graphical User Interface
for High-Performance Computing*for High-Performance Computing*

Sergey A. AvdeevSergey A. Avdeev11 and Bradley A. Shadwick and Bradley A. Shadwick22

11Department of Computer Science and Engineering University of Nebraska – Lincoln Department of Computer Science and Engineering University of Nebraska – Lincoln 22Department of Physics and Astronomy University of Nebraska - LincolnDepartment of Physics and Astronomy University of Nebraska - Lincoln

Introduction

Future work

It is becoming common for scientific codes
running on workstations to include a GUI to
allow the user to launch, monitor and
control calculations. Migrating such codes
to a high-performance cluster platforms
invariably requires abandoning the GUI in
favor of traditional input files and post-
processing of results. The relative
inconvenience of the user interface in a
typical cluster environment leads some
users to migrate to a cluster as a last
resort. To ease the transition from the
workstation and GUI environment to a
cluster environment, we have developed a
platform independent architecture for
adding a sophisticated GUI to applications
running on clusters.

 Begin testing with users doing production
physics runs.

 Automatic launching of Middleware layer
when requested.

 Support of multiple Kernels.
 Starting and shutting down kernel(s).
 File transfer to and from wGUI.
 Integration with parallel codes.
 Support for movies.
 Task manager.

Concept Prototype Screenshots (cont.)

Result of the diagnostics (1D-plot example):

Results representation (2D-plot example):

Conclusion

We believe that the prototype clearly
demonstrates that our approach to building
new interaction mechanism is viable and
deserves further development.

Acknowledgements

*Supported by the U.S. Department of
Energy under contract DEFG02-08ER55000

E-mails:
savdeev@cse.unl.edu
shadwick@mailaps.org

Screenshots

Main page:

Kernel main menu: One of the dialogs:

The communication protocol between
the Middleware and Kernel should be:

 easy to program on both sides;
 support programming languages of the

Middleware and a Kernel;
 not computationally expensive;
 reasonable bandwidth requirements

XML-RPC fits our requirements well:
 implementations exist for most popular

languages;
 easy to work with;
 simple XML encoding of data
 pure ASCII protocol for ease of

debugging
 somewhat verbose, use base-64

encoding for binary data (33%
overhead)

 efficient for small messages

Design

The system architecture consists of three
elements:
 a web-based user interface;
 a custom web-server (middleware layer)

that mediates interactions between the
user and the computational kernel;

 a lightweight XML-RPC server library
embedded in the computational kernel.

Typically the middleware will run on the
publicly accessible master-node of a cluster.

The XML-RPC server library is added to the
scientific code. This server, running as a
separate thread, processing requests from
the middleware in response to user actions.
The server adds little overhead to the
computational processes running on the
nodes as it is typically idle unless responding
to user-initiated tasks. An important design
consideration is to have all communication
between the middleware and the
computational code running on clusters node
be “out-of-band.” That is, all such
communication does not use MPI so as to
avoid contention with the scientific code.

In it’s simplest form, this system allows
graphical inspection of internal data-
structures in the scientific code and gives
real-time access to all log messages.
Alternatively, by exposing functions to the
XRM-PRC server, complex GUI applications
can be readily created.

A preliminary implementation of this system
has been developed around a hydrodynamic
laser-plasma interaction code. This code
was originally developed with an OS-
dependent GUI.
At present, wGUI is able to reproduce most
of the existing GUI features of the codes as
well as adding some features. In this
implementation, the middleware is based on
the Python web-application framework
CherryPy. The C++ library xmlrpc-c
provides the XML-RPC server functions in
the kernel which functions as a supervisor
directing the actions of the code in a manner
analogous to a typical GUI event handler.
 We will give a live demonstration of wGUI
system: launching a new task, monitoring
intermediate and final results will be shown.

Concept

ConceptConcept (cont.)

User requirements:
 remote monitoring and control;
 user friendly interface;
 graphical representations of data;
 minimal restrictions on client OS and

environment.
Solution: HTTP protocol
 widely used in the Internet;
 purpose is to create user friendly

interfaces;
 highly visual (in comparison with ssh).

Neither practical nor desirable to require the
scientific code (the "Kernel") to also manage
the user interface. In a variation of a typical
three-tier architecture, we introduce a
custom HTTP server (the "Middleware") that
manages the interaction between the user
and the kernel.

Middleware requirements from the Kernel
point of view:
 additional computation tasks should

minimally interfere with the main
task computation;

 network activity should not compete with
MPI;

 no need to expose cluster nodes to the
public network;

 expect reasonable bandwidth to
Middleware;

 minimal intrusion into the kernel; major
modifications of the scientific should not
be required;

 send only data to the middleware; the
kernel does not produce graphical
images;

	Slide 1

