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                                          The relevant equations 

Time t is normalized to the inverse electron plasma frequency 1−
peω , length is 

normalized to 1
0

−= pecl ω , velocity and momentum are normalized respectively to the

velocity of light c and to cM e . The general form of the Vlasov equation in a 4D phase-

space for the electron distribution function ),,,,( tpppxF zeyexee and the ion distribution 

function ),,,,( tpppxF ziyixii  (one spatial dimension) is written in a dimensionless form as 

follows : 
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(the upper sign in (1) is for the electrons equation and the lower sign for the ions

equation, and subscripts e or i denote electrons or ions respectively). In our

normalized units 1=em  and 
i

e
i M

M
m = , the ratio of electron to ion  masses.  

We write the hamiltonian of a particle in the electromagnetic field of the wave: 
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where ϕ  is the scalar potential. Equation (1) can be reduced to a two-dimensional pha

ace Vlasov equation as follows. The canonical momentum iceP ,

r
is connected to the parti

omentum iep ,
r  by the relation apP ieice

r
m

rr
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= is the normalized vector potent
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Choosing the Coulomb gauge ( 0=adivr ) , we have for our 1D problem 0=
∂
∂

x
ax , hence 

0=xa . The vector potential is now ),( txaa ⊥=
rr , and we also have the following relation 

along the longitudinal direction: 
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And since there is no transverse dependence: 
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This last equation means =⊥ iecP ,

r
const. We can choose this constant to be zero without

loss of generality, which means that initially all particles at a given (x,t) have the same 

perpendicular momentum ),(, txap ie ⊥⊥ ±=
rr . The Hamiltonian now is written: 
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The 4D distribution function ),,,( ,,, tppxF ieixeie ⊥
r can now be reduced to a 2D distribution 

function ),,( ,, tpxf ixeie :  

)(),,(),,,( ,,,,,, ⊥⊥⊥ = aptpxftppxF ieixeieieixeie
r

m
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),,( ,, tpxf ixeie  verify the relation: 
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Which gives the following Vlasov equations for the electrons and the ions:: 
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where ( ) ( )( ) 2/12
,

2
,,, 1 ⊥++= ampm ieixeieieγ .  
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and Poisson’s equation is given by: 
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The transverse electromagnetic fields  , zy BE and  , yz BE for the circularly polarized 

wave obey Maxwell’s equations. With zy BEE ±=±  and yz BEF ±=± , we have: 
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Which are integrated along their vacuum characteristic x=t. In our normalized units 

we have the following expressions for the normal current densities: 
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                                        The numerical scheme 

Since the early works presented in [8,9] which proposed the second-order fractional 

step scheme for the solution of the Vlasov-Poisson system, the direct solution of the

Vlasov equation as a partial differential equation in phase-space has become an 

important method for the numerical solution of the Vlasov equation ( see the review

articles in [11,12]). The code we use applies a numerical scheme based on a two-

dimensional advection technique, of second order accuracy in time-step, where the 

value of the distribution function is advanced in time by interpolating in two

dimensions along the characteristics using a tensor product of cubic B-splines [13,14], 

also called an Euler-Lagrange method [15]. 

The numerical scheme to advance equation (10) from time tn to tn+1 necessitates the 

knowledge of the electromagnetic field ±E  and ±F  at time tn+1/2 . This is done using a 

centered scheme where we integrate (13) exactly along the vacuum characteristics

with tx ∆=∆ , to calculate 2/1+±nE  and 2/1+±nF  as follows: 
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A similar equation can be written for 2/1+±nF . From (11) we also have 
2/11 +

⊥⊥
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⊥ ∆−= nnn Etaa
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rrr . To calculate 2/1+n
xE , two 

methods have been used. A first method calculates n
xE  from n

ief ,  using Poisson’s 

equation, then we use a Taylor expansion:: 
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A second method to calculate 2/1+n
xE  is to use Ampère’s equation: x

x J
t

E
−=

∂
∂ , from 

which n
x

n
x

n
x tJEE ∆−= −+ 2/12/1 . Both methods gave the same results. ( We have used this

second method for the results presented in section 3).  

Equation (10) is solved using an Euler-Lagrange scheme. Given n
ief , at mesh 

points (we stress here that the subscript i denotes the ion distribution function), we

calculate the new value 1
,
+n
ief  at the grid points jx , and pj corresponding to the mesh 

points ),( , px ijxej px  by writing that the distribution function is constant along the

characteristics. The characteristics equations for (10) are given by:  
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We assume that at the time ttt nn ∆+≡+1  , x is at the grid point jx , and ixep ,  is at the grid 

point jp . The following leapfrog scheme can be written for the solution of (17): 
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where ))(),(( , nixen tptx  is the point where the characteristic is originating at nt (not 

necessarily a grid point).  
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Equations (18) and (19) can be rewritten as: 
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Which are implicit equations for ixe,∆  and 
ixep ,

∆ and are solved by iteration. This 

iteration is effected as follows. We rewrite (21,22) in the vectorial form: 
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ie,X  is the two dimensional vector ( )ixeie px ,, ,=X , and ),(
,,, ixepixeie ∆∆=∆X  is the two 

dimensional vector in (23) and ( )2/12/1
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XX XV , where we start the iteration 

with 0
,ieX∆ =0 for k=0. Usually two or three iterations are sufficient to get a good 

convergence. The shifted values in Eq.(21,22) are calculated by a two-dimensional 

interpolation using a tensor product of cubic B-splines [13,14]. We now write that the 

distribution function is constant along the characteristics. Then 1
,
+n
ief  is calculated from 

n
ief ,  from the relation : 

   ;  )2-,2())(),((),(
,,,,,,,

1
, ixepx pixeixe

n
ienixen

n
ieijxej

n
ie pxftptxfpxf ∆∆−==+ .    (24) 

Again the shifted values in (24) are calculated with a two-dimensional interpolation 

using a tensor product of cubic B-splines.  
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A circularly polarized laser beam incident on an overdense plasma:
ion acceleration and plasma jet formation

-Time is normalized to         , and distance to 
-The forward propagating circularly polarized laser wave enters the system at

the left hand (x=0) boundary, where the forward propagating field

-The  shape factor                                             

-Another case use                    for                     

-A characteristic parameter of a high power laser beam is the normalized vector
potential or quiver momentum , where is the 
vector potential of the wave. We choose for the amplitude of the potential
vector . For the circularly polarized wave
I is the laser intensity in                         is the laser wavelength in microns.

100/ =crnn

τcos)(2 0 tPEE r=+ )sin()(2 0 τtPEF r−=−

ptt 5.1−=τ 12=pt( ) )/.)2ln(.2exp()( 2
pr ttP τ−=

1)( =tPr ptt 5.1>

0/ acMAea e ==⊥

r
⊥A
r

2/250 =a 182
0

2
0 10x368.1/2 λIa =

0
2 ,/ λcmWatts

1−ω c/ω

100/ =crnn



- corresponding to                                 

- The lorentz factor for the oscillation of an electron in the field of 
the wave is

- The initial distribution functions for electrons and ion are 
Maxwellian with temperature Te=1.Kev for the electrons and for 
the ions  Ti=0.1 Kev . Mi/Me=2.x1836                  

- We use a fine resolution in the phase-space,  with N=10000 grid
points in space and 2200 grid points in momemtum space for the 
electrons and the ions in the Vlasov code (extrema of the electron
momentum are         , and              for the ion momentum). This fine 
resolution of the phase-space guarantees accurate results. We use 
a time-step and a grid size such that

- The total length of the system is .   We have a vacuum 
region of length on each side of the plasma slab. 
The steep jump in density at the plasma edge on each side of the 
flat top density of the slab target is . The length of 
the central plasma slab with flat top density of 1 (normalized to   

)  is . In free space for the 
electromagnetic wave , and                             .   It follows that

The Vlasov code is executed on an Opteron 2218 processor
(cpu 2.6 GHz). The PIC code is the relativistic 1D code BOPS,
(Bourdier, 1983). It is executed on an AMD Opteron processor
(cpu 2.19 GHz)
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A circularly polarized laser beam normally incident on an overdense
plasma (n/ncr=100): ion acceleration and plasma jet formation

THE CASE OF A CONSTANT LASER INTENSITY

•

Fig.1a Electron (full curve)  and ion             Fig.1b Electron (full curve) and ion                   
(dashed curve) density profile at t=0.       (dashed curve) density profile at t=20  

Fig.1c Electron (full curve) and ion           Fig.1d Electron (full curve) and ion                
(dashed curve) density profile at t=25. 2   (dashed curve) density profile at t=30.

(Vlasov code)                                                  (Vlasov code)

Fig.1e Electron (full curve)  and ion                           
(dashedcurve) density profile at t=55. 

(Vlasov code)  



VLASOV CODE                                          PIC CODE

Fig.2a Density profiles at the edge of the      Fig.3a Density profiles at the edge of  the
plasma for the electrons (full curve),             plasma for the electrons (full curve),

the ions (dashed curve) and the                     the ions (dashed curve) and the
electric field (dashed-dotted curve), t=20     electric field (dashed-dotted curve), t=20.0

(same as Fig.(1b)). (Vlasov code)         (PIC code)            
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Fig.2b t=24.4  (Vlasov code)                       Fig.3b  t=25.2 (PIC code)          
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Fig.2c t=25.2 (Vlasov code)                            Fig.3c  t=25.6   (PIC code)  



VLASOV CODE                                         PIC CODE
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Fig.2d t=30 (Vlasov code)                                     Fig.3d t=26 (PIC code)
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Fig.2e t=40 (Vlasov code)                                           Fig.3e t=30 (PIC code)
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Fig.3e t=55 (Vlasov code)                                   Fig.3f t=40 (PIC code)



ELECTROMAGNETIC WAVE FIELD

zy BEE ±=±
yz BEF ±=±

zy BEE ±=±

+E
−F

−E +F
Fig.4a Incident wave  Fig.4b Incident wave

(full curve) and reflected wave
(dashed curve), t=40 (Vlasov code)  

(full curve) and reflected wave 
(dashed curve), t=40 (Vlasov code)
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Figure 4a presents the forward propagating wave        (full curve)  and the 
backward reflected wave          (dashed curve) at t=40 for the calculation 
done with the Eulerian Vlasov code. Figure 4b presents the corresponding 
results for the forward propagating wave         (full curve) and the 
backward propagating wave             (dashed-curve). The same results 
obtained from the PIC code are presented in Figures 5a,b. The
agreement between the two codes for the phase and amplitude of the 

incident and reflected waves is excellent. The electromagnetic wave 
damps in the plasma over a distance of the order of the skin depth 

. The strong increase of the ion and electron densities at the wave-
front plasma-edge interface makes the plasma more opaque, with the
steep plasma edge acting as a moving mirror for the incident light. Note 

that when        is at a peak value,        is zero and vice-versa, so the wave is
always maintaining a pressure on the surface of the plasma.The frequency
of the backward reflected wave is slightly down-shifted by the moving 
reflecting plasma surface, which is acting as a mirror. We can check in 
Figures 4a,5a at t=40 the reflected waves (dashed curves)  in vacuum 
have a wavelength (and a period) slightly bigger than the corresponding 
ones for the incident wave (full curve). In Guérin et al.,1996 the following 
analytical expressions were derived for the reflected wavenumber
and the reflected frequency            of the laser wave due to the Doppler 
shift by the moving reflecting surface:

• (a)

• (b)

where in our units                                is the normalized velocity of the

discontinuity surface, and                              for the incident wave, since  
for the incident laser wave in free space. We get for the 

reflected wave in free space from Eqs.(a-b),                                          
or                                  since                      . This is confirmed if we follow 

the peaks of the reflected wave in Figures 4,5 (dashed-curves). We find a 
wavelength for the reflected wave of 6.562, which corresponds to

, in close agreement to what is calculated from Eq.(b).
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                                         Fig.13 Frequency spectrum of the incident wave 
                                         +E  (full curve) and reflected wave −E  (dash curve), 
                                             monitored at x=0 
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PHASE-SPACE ION DISTRIBUTION FUNCTION
VLASOV CODE                               PIC CODE

Fig.6a Phase-space plot of the ion distribution function at t=20         
VLASOV CODE                                            PIC CODE 

Fig.6b Phase-space plot of the ion      
distribution function at t=24.4 

Vlasov code



PHASE-SPACE ION DISTRIBUTION FUNCTION
VLASOV CODE                               PIC CODE

Fig.6c Phase-space plot of the ion distribution function at t=30      
VLASOV CODE                                            PIC CODE 

Fig.6d Phase-space plot of the ion distribution function at t=40      
VLASOV CODE                                            PIC CODE 



Fig.6e Phase-space plot of the ion      
distribution function at t=55 

(Vlasov code)

PHASE-SPACE ION DISTRIBUTION FUNCTION
VLASOV CODE                               



PHASE-SPACE DISTRIBUTION FUNCTION FOR 
THE ELECTRONS (PIC CODE)

Fig.8a Phase-space plot of the         Fig.8b Phase-space plot of  the 
electron distribution function      electron distribution function  

t=30                                                             t=40



PHASE-SPACE ELECTRON DISTRIBUTION 
FUNCTION (VLASOV CODE)

Fig.9a Phase-space plot of  the           Fig.9b Phase-space plot of  the 
electron distribution function            electron  distribution function

t=20                                                           t=30

Fig.9c  t=40            (Vlasov code)      Fig.9d  t=55



Fig.10 Same as Fig.(9d), phase-space plot                         
of the electron distribution function at t=55,                       
concentrating on the edge region (Vlasov

code)

PHASE-SPACE ELECTRON DISTRIBUTION 
FUNCTION (VLASOV CODE)



• The position of the wave-front plasma-edge interface 
and the solitary-like structure of the ions in Figure 2 
(Vlasov code) and Figure 3 (PIC code) are essentially 
the same (the solitary ion peak in Figure 2e is at 
x=8.64 and in Figure 3f at x=8.7). This interface is 
traveling at a constant speed for t>18 under the 
constant ponderomotive pressure of the incident 
laser beam. This constant speed is calculated from 
the numerical results by following the interface in 
Figure 2 or Figure 3, and has a value of  0.024. The 
velocity of the front pushed by the ponderomotive
pressure was calculated in Denavit,1992 by 
balancing the electromagnetic pressure at the 
absorber surface with the rate of increase in ion 
momentum, and the following expression for the 
velocity of the surface of discontinuity was obtained:

• (16)
•
• With ,                and                    ,                  we 

calculate               (normalized to the velocity of light). 
This value is close to the value of 0.024 calculated by 
the Eulerian and the PIC codes. We note however a 
more accurate agreement with (16) obtained for more 
moderate values of        used in Shoucri and Afeyan, 
2010 and Shoucri, 2010 (where we used hydrogen, 
which resulted in a higher velocity). In the present 
case with deuterium, we have a smaller value of 
0.024 for the velocity, and the margin of error for the 
accurate calculation of this small velocity can be 
bigger. (We note that the relativistic correction to 
Eq.(16) as reported by Schlegel et al., 2009 and 
Robinson et al., 2009 is small in our case and 
reduces the velocity calculated in Eq.(16) from 0.029 
to 0.028).
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• At the right of the ion peak in Figures 2d-f and 
Figures 3e-f we have a neutral plasma jet with 
a shock-like structure expanding to the right 
with an average speed of about 0.052, 
calculated by dividing the distance traveled by 
the neutral plasma edge by the corresponding 
time difference. This entire structure is stable 
as it propagates and expands to the right. The 
value of the free streaming edge at the right 
can also be calculated for the Eulerian Vlasov
code from Figures 6d,e  for instance, where we 
see the free streaming deuterium ions having 
a normalized momentum around 180. Hence

• ,or                                 = 0.05. This 
corresponds to an energy of the deuterium 
ions of                                                         MeV. 
The value obtained from the PIC code (Figure 
7c ) is slightly higher, we have                         , 
or                                     =0.054.

180/ ≈cMM eiυ )1836*.2/(180/ ≈cυ

≈≈ 222 )/(2/ ccMM ii υυ 345.20025.0x938 =

200/ ≈cMM eiυ
)1836*.2/(200/ ≈cυ



A CIRCULARLY POLARIZED LASER BEAM NORMALLY INCIDENT ON 
AN OVERDENSE PLASMA (n/Ncr=100): ION ACCELERATION AND 

PLASMA JET FORMATION 
THE CASE OF A LASER BEAM PULSE
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Fig.11a Density profiles at the edge of     Fig.12a Density profiles at the edge of   

plasma for the electrons (full curve),       the plasma for the electrons (full curve),
the ions (dashed curve) and the                 the ions (dashed curve) and the        

electric field (dashed-dotted curve), t=30   electric field (dashed-dotted curve), t=30 
(Vlasov code)                                          (PIC code)
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Fig.11b    t=40 (Vlasov code)                   Fig.12b   t=40 (PIC code)              



VLASOV CODE                                        PIC CODE
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Fig.11c t=42.6 (Vlasov code)                 Fig.12c t=42.6  (PIC code)
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Fig.11d t=50. (Vlasov code)                  Fig.12d t=50.  (PIC code)
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Fig.11e t=57.5 (Vlasov code)                Fig.12e t=57.5  (PIC code)



ELECTRIC FIELD AT THE PLASMA EDGE
GAUSSIAN LASER BEAM PULSE

VLASOV CODE                                                 PIC CODE
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Fig.13 Electric field at the wave-front plasma-edge interface, at t=20, 25.2, 30, 35.2

ION PHASE-SPACE

Fig.14a Phase-space plot of the ion      Fig.15a Phase-space plot of the ion
distribution function t=30 (Vlasov code) distribution function t=30 (PIC code)



ION PHASE-SPACE
VLASOV CODE                                                     PIC CODE

Fig.14b   t-42.6 (Vlasov code)                Fig.15b   t=42.6 (PIC code)

Fig.14b   t-50. (Vlasov code)                Fig.15b   t=50. (PIC code)Fig.14b   t-50. (Vlasov code)                Fig.15b   t=50. (PIC code)

Fig.14b   t-57.5 (Vlasov code)                Fig.15b   t=57.5 (PIC code)



ELECTRON PHASE-SPACE
VLASOV CODE

GAUSSIAN LASER BEAM PULSE

Fig.16a Phase-space plot of the elec- Fig.16b Phase-space plot of the elec-
tron distribution function at t=30               tron distribution function at  t=42.6

Fig.16c  Phase-space plot of the elec- Fig.16d Phase-space plot of the elec-
tron distribution function at t=50                 tron distribution function at t=57.5



ELECTRON PHASE-SPACE
VLASOV CODE

GAUSSIAN LASER BEAM PULSE

Fig.17a Phase-space plot of the elec- Fig.16b Phase-space plot of the elec-
tron distribution function (same as           tron distribution function (same as
Fig.16c, concentrating on the                  Fig.16d, concentrating on the 

expanding neutral plasma region)             expanding neutral plasma region

ELECTRON PHASE-SPACE
PIC CODE

GAUSSIAN LASER BEAM PULSE

Fig.18a Phase-space plot of the elec- Fig.18b Phase-space plot of the elec-
tron distribution function at  t=42.6           tron distribution function at t=57.5

(PIC code)                                          (PIC code)



ELECTROMAGNETIC WAVE FIELD
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Fig.19a Incident wave Fig.19b Incident wave

(full curve) and reflected wave

(dash curve) (dash curve)   at t=42.6                                                      at t=42.6 

(full curve) and reflected wave
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