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The Big Question

Is it possible to investigate large scale hydro-
dynamic flows in a complex plasma using exact
molecular dynamics (MD) simulations ?

Abstract

Using MD simulations, we report for the first time,
the fate of large scale Kolmogorov flows in a strongly
coupled complex plasma. The prototype system is
a two-dimensional (2D) Yukawa liquid. Such flows
have been widely used to study flow instability and
transition to turbulence in Navier-Stokes fluids [1].
In the 2D case, a Kolmogorov flow is generated
by imposing a unidirectional force with magnitude
varying sinusoidally along the other direction. For
small enough forcing magnitude, this results into a
series of parallel shear bands having sinusoidal veloc-
ity profile. At higher forcing magnitudes, the desta-
bilizing inertial effects dominate over the stabilizing
viscous effects and the flow undergoes a transition
to a vortex lattice [2] and eventually turbulence [3].

The State of Strong Coupling

Complex plasma is made up of dust grains, ions,
electrons and neutral gas. Grains interact via

Yukawa potential:

- Amepa T (1)
where, (), a and Ap are the dust charge, Wigner
Seitz radius and Debye length respectively. Yukawa
liquids exist in a state of strong coupling where
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where Ty is the dust temperature.
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Parameter List

Number of grains: N = 2.304 x 10°
Size of the system (in units of a): L = 480
Number Density (in units of a™1): n = 1

Screening parameter: £ = a/Ap = 0.5
CPU’s used: 24. Typical wall time: 48 hrs.

Past Work: Kelvin Helmholtz instability in strongly coupled Yukawa liquid was reported using “first principles” MD simulations [4, 5] as an “initial value problem”.

Present Work: In contrast to these works on parallel shear flows [4, 5], Kolmogorov flows is a driven problem and hence fundamentally different in nature.

Equation of motion for grains: mr; =
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(i) + Focos(2mn,x/L)[1 + Acos(2mn,y/L)]Y.

Kolmogorov Flows (Driven Problem)
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Time evolution of vorticity (w = V x v) field in a Kolmogorov flow starting from an initial value of I' = 120. Magnitude of forcing F;y = 0.005 and amplitude of perturbation A = 0. Grain

velocities in the region are fluidized through a 45 x 45 grid to construct local vorticity. Arrows indicating direction of local velocity are obtained by fluidizing the grain velocities over a 60 x 60 grid.

Growth rates

Growth rate of the instability can be obtained by
plotting time evolution of the perturbed kinetic en-
ergy along #, normalized to its initial value:
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Figure 2: (a.) Time evolution of perturbed kinetic energy shown
in Equation (3). The logarithm of |0 E7| grows linearly in time
leading to nonlinear saturation at late times. (b.) Growth rates

v as a function of forcing magnitude Fj for two values of I'.
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Figure 3: (a.) Growth rate spectra: Initial [' = 120 and mode
amplitude A = 0.1. (b.)

corresponding to Figure 1. The rise in temperature is clearly

Plot of I' as a function of time

seen due to shear induced heating [5].

Conclusions

e We performed MD simulation of Kolmogorov flows
starting from two values of I' = 120 and 50.
e Flows are stable upto a critical F¢ &~ 2.2 x 10™*

e Amplitude of driving force F{ is seen to be roughly
the same for both the I' = 50 (driven problem).

Future Work

e Linear stability analysis using a generalized hydro-
dynamic model.

e Comparison of present results with thermostatted
(constant I") runs.
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