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Introduction 

•  GOAL: Develop “sub-grid-scale” models for kinetic and 
gyrokinetic plasma turbulence simulations 
–  To compute plasma turbulence at a coarse-grain resolution 

without sacrificing physics accuracy 
–  Fully resolved simulations are prohibitively expensive 

•  Motivation for current investigation 

–  CPES (US DOE Scidac Center) is addressing the issue of 

coupling “coarse-grained” XGC0 simulations with “fine-grained” 

XGC1 simulations 

–  Hydrodynamic turbulence simulations frequently employ “large 

eddy simulation (LES)”  methodology to capture “sub-grid-scale 

(SGS)” physics 



Introduction – Present Work 

•  Investigate numerical aspects of plasma turbulence 
simulations in the context of drift-kinetic turbulence in 4D 
–  5D and 6D fully-resolved simulations are still computationally 

expensive 

•  Developed an Eulerian drift-kinetic code  
–  Investigate a variety of numerical algorithms 

•  Perform “Direct Numerical Simulations”, i.e., fully-
resolved simulations  
–  What does fully-resolved mean?  
–  Role of collisions (models) and regularization of the equations 

•  Quantify the SGS terms 
–  a priori estimates: perform DNS, filter and examine SGS terms 
–  a posteriori: perform LES and compare with filtered DNS to 

examine the efficacy of the SGS model 



Background  
•  Science question: In gyrokinetic plasma turbulence, what are the 

mechanisms of energy cascade from large to small scales? 
–  A good exposition of the nonlinear route to dissipation in phase space given by 

Schekochihin et al. (Plasma Phys. Control. Fusion 2008, Astrophyisical J. Supp. 2009) 
–  If the collision frequency is small, the distribution function develops small features in 

velocity space 
–  Collisionless (Landau) damping redistributes generalized energy: electromagnetic 

fluctuations are converted to entropy fluctuations 
–  In order for any heating to occur, the entropy fluctuations must cascade in phase space 

to collisional scales. Collisions, even if infrequent, are necessary to complete the 
cascade and satisfy Boltzman H-theorem. Collisions are necessary for the system to 
converge to a statistical steady-state 

•  Other relevant papers 
–  Howes (PRL 2008) , Tatsuno et al. (PRL 2009), Howes (PRL 2011): AstroGK code 
–  A. Bañón Navarro et al. (PRL 2011): GENE code. Also discuss SGS modeling for 

plasma turbulence 
–  Watanabe and Sugama (PoP 2004) and many others by this group.  
–  Grandgirard et al. (Plasma Phys. & Controlled Fusion, 2008):  GYSELA code 

•  GYSELA code (Grandgirard et al. , J. Comput. Phys. 2006) 
–  Solves the 4D drift kinetic and 5D gyrokinetic systems 
–  Semi-Lagrangian approach (splitting - second order) 
–  Second-order Poisson solver 



4D Drift-kinetic Vlasov Equation 

     where                                          

 - distribution function f(x,y,z,v||,t) in 4D 

 - drift velocity                          ,                  in the “toroidal” direction 

 - v|| : velocity along the magnetic field lines 

-                     ,   q: ion charge, mi : ion mass  

                         Adiabatic electrons 
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                Poisson equation in cylindrical geometry 

-   !: electric potential; 
 -                    electric field;  
 -   ion cyclotron frequency                       ; 
 -  Te: electron temperature profile; 
 -  n0: electron density profile; 

 -  ion density profile                                                         ; 

-                         , average on the magnetic field lines  
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-   Local Maxwellian as the equilibrium part: 

-   Perturbation:  
    where g(r) and h(v||) are exponential functions    

where "mn and !mn are the random amplitude and random phase for the mode 
(m,n) 

Periodic boundary condition on # and z 
Boundary condition on r: zero flux of f 
Homogeneous Neumann (Dirichlet) boundary condition for potential in r at 0 (rmax) 
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Initial and Boundary Conditions 
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Normalization !

- Temperature               , where                ;  

- Time             ,  where                          - length  

- Velocity             ,  normalized to the sound speed 

- Potential & electric field   

Normalized equations: 
-  Vlasov equation:  
-  Poisson equation: 

-  Initial condition: 
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Numerical Method  !
 In the uniform field case, the Liouville theorem is applicable 

Hence the Vlasov equation can be written in conservative form: 

 Time evolution for                       

  2nd  and 3rd order TVD Runge-Kutta. 2nd order scheme written below:  
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Numerical Method  !
 For numerical stability, it was empirically found that the following form of the 

equations leads to a much more robust and stable numerical simulations 
and requires no filtering ($f numerics on full-f equation) 



Numerical Method Cont.  !

- Finite volume discretization: 

-High order upwind discretization  
 1st, 3rd, 5th and 7th order options in the code 

-Central finite difference discretization  
 2nd, 4th order, 2nd and 4th order tuned finite difference options in the code 

- Example: 5th  order upwinding flux calculation:   
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References: 1) Hill and Pullin, J. Comput. Phys. 2004, for tuned finite differences 

       2) Pirozzoli, J. Comput. Phys. 2002. for upwind-biased fluxes   



Numerical Method - Dispersion & Dissipation  !
•  Drift-kinetic PDEs have no natural dissipation  

–  Unless collision operator is included 
•  In the absence of physical dissipation  (except Landau damping), we may 

resort to “numerical” dissipation to provide high-frequency cut-off (Note that 
the centered finite differences have no numerical dissipation) 

•  For 1st, 3rd, 5th and 7th order upwind methods, the dissipation and 
dispersion characteristics are shown in the figure below 

Imaginary part -> dissipation 

Real part -> dispersion 



Poisson Solver!
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Poisson Solver Cont.  !

Together with Neumann 
and Dirichlet  
boundary condition: 

use 4th order finite difference  
scheme to solve 1D linear  
system for the Fourier modes  
with a fast penta-diagonal solver 
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Numerical Results !
•  Domain: [0:15] x [0:2%] x [0:1500] x [-8:8] 
•  Mesh resolution: 256x256x32x256 (512 procs Shaheen) 

•  Time step dt=0.1 
•  4th Order tuned centered finite difference 
•  Density and temperature profiles 



Numerical Results – Higher Order Moments !

•  The time evolution of the heat flux:!
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Numerical Results - Distribution Function !

t=0 t=1600 t=2000 

t=3000 t=4000 Constant coordinate 
surfaces visualized 
r=2, z=0, !=" 



Numerical Results - Potential !
t=1600 

t=4000 

t=2500 

Linear phase 

Non-linear phase 



Energy conservation !

•  Variation of the kinetic energy: 

•  Variation of the potential energy:  

•  Conservation of the total energy  
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Numerical Results - Conservation !

Energy conservation within 0.02% 

Mass conservation < 10 -3 % 



Numerical Results – Energy Conversion !



Numerical Results - Energy Spectrum !



Vlasov-Poisson System – Ill-posedness 
•  From the numerical results, and in particular the energy spectrum, we 

observe generation of small scales 
–  What is the physical cut-off? 

•  Claim: The drift-kinetic Vlasov-Poisson system of equations is scale-free 
–  x! !x’, t!!t’, B!B’/!, "="’/!2, E!E’/!, f=f’, n=n’, v||=v’|| 
–  With this transformation the equations are unchanged 

•  In the nonlinear regime, there is no physical cut-off for the small scales. 
The system of equations is ill-posed and requires either a physical cut-off 
mechanism or a numerical regularization 

–  Without regularization the generation of small scales proceeds ad-infinitum 
–  Convergence with mesh refinement will not be achieved 
–  In fact, after a certain critical time the code ought to blow up as energy keeps piling at the 

small-scales  
–  Frequently the phrase “velocity space filamentation” is used (see, for example, Klimas, 

JCP 1987 and references therein for a discussion of this) 
–  Tatsuno et al. (PRL 2008) introduce a non-dimensional number D (a la Reynolds 

number) to characterize the scale separation in gyrokinetic turbulence 



Vlasov-Poisson System – Regularization 
•  A Laplacian “viscosity” term in the Vlasov equation 

–  Motivated by shock-hydrodynamics 
–  Viscosity coefficient  depends on the local gradients so that in relatively smooth regions 

this term is inactive 
–  Results presented so far used this regularization 

•  A hyperviscosity term in the Vlasov equation 
–  Motivated by hydrodynamic turbulence simulation literature 
–  4th order hyperviscosity term which provides a numerical cut-off at high wave numbers. 

•   Employed, for example, A. Bañón Navarro et al. , Free Energy Cascade in 
Gyrokinetic Turbulence, PRL, 2011. Also by Howes et al. PRL 2008 

•  Implicit numerical dissipation provided by upwinding methods 

•  Collision physics model  
–  Example: Howes et al. (PRL 2011) work on gyrokinetic simulations of solar wind used 

collision models developed by Abel (PoP 2008) and Barnes (PoP 2009) 
–  Most of the recent papers acknowledge that we need collisions to provide the physical 

cut-off 



Model Collision Operator!
•  Generalization of the operator defined in Rathman and 

Denavit  

   where the collision operator: 
- 

-                                

•  4th order central difference for discretization 
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Regularization of Central FD Scheme !



Comparing Central vs. Upwind !

Less than 1% difference until t#2300 



Comparing Central vs. Upwind !
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Distribution function f(r,3%/2,0,v||)  
Central vs. Upwind !

C
en

tr
al

 

U
pw

in
d 

t=2000 

t=4000 



Distribution function f(7.5,3%/2,0,v||)  
Central vs. Upwind !

t=2000 
t=4000 

Good agreement until early non-linear stage. Upwind method gives smoother  
distribution function at late times compared with central FD.  



Kinetic Energy Spectrum: Central vs. Upwind !

Good agreement up to k=60-70.  
Upwind method results in steeper spectrum for high k 



Kinetic Energy Spectrum: Mesh Resolution !

Energy pile up at high k 



Radial Electric Field: Different Methods  
and Mesh Resolutions !



Heat Flux: Comparison of Order !



Hydrodynamics Turbulence - Primer 

•  Central idea 
–  For high Reynolds numbers, there exists a range of scales (aka 

the inertial range) in which effects of viscosity, boundaries, and 
large scale structures. Dimensional analysis leads to the well-
known universal power-law spectrum (Kolmogorov 1941) 

•  DNS: Direct Numerical Simulation 
–  All scales, i.e. turbulent fluctuations resolved up to the 

Kolmogorov scale where dissipation takes place 
–  Computationally expensive for large Reynolds numbers 

•  No of grid points scales as Re9/4 
•  LES: Large Eddy Simulation 

–  Only those turbulent fluctuations resolved as determined by the 
mesh resolution. Scales smaller than the mesh, i.e. sub-grid-
scales must be modeled 



Filtering the Navier Stokes Equations 
•  Consider a filter 

–  For example a Gaussian filter 
•  Convolve the velocity field with the filter (~ below indicates the 

convolved velocity field) 
–  ! is the filter width below which the scales are eliminated 

•  The resulting equations, which are amenable to numerical 
discretization at spatial resolution !, are 

•  The additional term above dubbed the “SGS (sub-grid-scale)” 
stress tensor is 

–  SGS stress tensor must be modeled in terms of the resolved (filtered) 
velocity field Leonard, Adv. Geophysics, 1974 

Pope, “Turbulent Flows”, Cambridge, 2000 
Rogallo & Moin, Ann. Rev. Fluid Mech, 1984 
Lesieur & Metais, Ann. Rev. Fluid Mech, 1996 



“LES” for Kinetic Equations 

•  Present work explores applying similar ideas to kinetic 
equations (Vlasov, Fokker-Planck) 
–  Question: Can we filter the 6D kinetic equation and derive 

analogous SGS terms which must be modeled if all scales are 
not resolved? 

–  Benefit: It is likely that even a modest reduction in size may 
result in vast savings in computations  

•  Filter the kinetic 
 equation 

Extra term resulting from 
 correlations between sub-grid  
quantities; a’ contains sub-grid 

magnetic and electric fields 



Examining the SGS terms!

     Define  
     the filtered field has 

     Filtered Vlasov equation:   

       Calculate the last three SGS terms  !



•  SGS terms evaluated by filtering the simulation results 
–  Filter is a “sharp cut-off” in Fourier space kc=16 

Numerical Results: SGS Terms 



SGS Terms: Comparison of Order 

After t>2500 fraction of SGS terms compared with fv is in excess of 20-30%  



SGS Terms: Mesh Resolution 



Summary & Future Work 

-  Numerical results presented from a recently developed Eulerian Vlasov 
code 
-  High-order fluxes with 4th order Poisson solver 
-  Regularization (either diffusion/hyperdiffusion/upwinding/model collisions) 

required for code stability 
-  A true DNS will require cut-off provided by physical collisions which must be 

resolved 
-  Presented preliminary estimates of SGS terms which are in excess of 

20-25%.  
-  Under-resolved simulations will miss this contribution unless modeled 
-  Back-scatter effects from fine to coarser scales will render these missed SGS 

terms even more important 

-  Main challenge: Developing physically accurate models for SGS terms 
in terms of resolved quantities especially because cascade to fine scales 
is not as straightforward as in hydro turbulence 

-  Future Work 
-  Extend to 5D gyrokinetic  
-  More diagnostics and quantification of SGS terms 
-  Develop SGS models 
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