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Introduction

« GOAL: Develop “sub-grid-scale” models for kinetic and
gyrokinetic plasma turbulence simulations

— To compute plasma turbulence at a coarse-grain resolution
without sacrificing physics accuracy

— Fully resolved simulations are prohibitively expensive

» Motivation for current investigation
— CPES (US DOE Scidac Center) is addressing the issue of

coupling “coarse-grained” XGCO simulations with “fine-grained”

XGC1 simulations

— Hydrodynamic turbulence simulations frequently employ ‘large
eddy simulation (LES)” methodology to capture “sub-grid=scale
(SGS)” physics %’J) KAUST



Introduction — Present Work

 Investigate numerical aspects of plasma turbulence
simulations in the context of drift-kinetic turbulence in 4D
— 8D and 6D fully-resolved simulations are still computationally
expensive
* Developed an Eulerian drift-kinetic code
— Investigate a variety of numerical algorithms

* Perform “Direct Numerical Simulations”, i.e., fully-
resolved simulations
— What does fully-resolved mean?
— Role of collisions (models) and regularization of the equations

* Quantify the SGS terms
— a priori estimates: perform DNS, filter and examine SGS terms

— a posteriori: perform LES and compare with filtered DNS4te
examine the efficacy of the SGS model <= 1) KAUST



Background

« Science question: In gyrokinetic plasma turbulence, what are the
mechanisms of energy cascade from large to small scales?

— A good exposition of the nonlinear route to dissipation in phase space given by
Schekochihin et al. (Plasma Phys. Control. Fusion 2008, Astrophyisical J. Supp. 2009)

— Ifthe collision frequency is small, the distribution function develops small features in
velocity space

— Collisionless (Landau) damping redistributes generalized enerqgy: electromagnetic
fluctuations are converted to entropy fluctuations

— In order for any heating to occur, the entropy fluctuations must cascade in phase space
to collisional scales. Collisions, even if infrequent, are necessary to complete the
cascade and satisfy Boltzman H-theorem. Collisions are necessary for the system to
converge to a statistical steady-state

« Other relevant papers
— Howes (PRL 2008) , Tatsuno et al. (PRL 2009), Howes (PRL 2011): AstroGK code

— A. Banon Navarro et al. (PRL 2011): GENE code. Also discuss SGS modeling for
plasma turbulence

— Watanabe and Sugama (PoP 2004) and many others by this group.
— Grandgirard et al. (Plasma Phys. & Controlled Fusion, 2008): GYSELA code

 GYSELA code (Grandgirard et al. , J. Comput. Phys. 2006)

— Solves the 4D drift kinetic and 5D gyrokinetic systems
— Semi-Lagrangian approach (splitting - second order)
— Second-order Poisson solver (
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4D Drift-kinetic VlIasov Equation

a - = Jaf . d
i+VGC.VJ_f+V”i+VHl=O
ot 0z v,

where g _(9 19
1 = )
ar r 060

- distribution function f(x,y,z,vt) in 4D
- drift velocityy . = M B= Be_in the “toroidal” direction
GC Bz

- v|: velocity along the magnetic field lines

v =—LE
m.

1

, Q. ion charge, mi: ion mass

Adiabatic electrons J) KAUST
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Poisson equation in cylindrical geometry

) no(r) YA -
Sl

Iinearizedg;_rization term adiabatic response of the electrons
- @: electric potential,

- E=-V¢ ¢€lectric field;
ion cyclotron frequency €2, =q,B,/m;;
Te: electron temperature profile;

no: electron density profile;

ion density profile 7,(r.0,2.1) = [dv [ (r,0,2,v),1) ;

1 . :
- ()= L—f- dz , average on the magnetic field lines
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Initial and Boundary Conditions

- Local Maxwellian as the equilibrium part: f* = feq + Of

n,(r) mivllz
) = C -

T = Gy Y 22@)]

- Perturbation: Of =feq8(7”)h(Vu)5P(3,Z)

where g(r) and h(vy) are exponential functions

27N
op(0,7) = E ——2z+m0O +
p(0,7) mnemncos( 3 Z+m ¢mn)

Z
where €mn and @mn are the random amplitude and random phase for the mode
(m,n)

Periodic boundary condition on 6 and z
Boundary condition on r: zero flux of f
Homogeneous Neumann (Dirichlet) boundary condition for potential in r at O (r

max)
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Normalization

- Temperature 7-—— ,where L) _;
T, T, n
-Time7=Q; , where Q,=¢B,/m;  -length [=(Q,/c,)

- Velocity #=— , normalized to the sound speed «, = Z;ZO
C .

S l

- Potential & electric field &= (. /7, Y, £=(/c.B,)E

Normalized equations:

i ian: 0 9
Vlasov equation: iHGC Vv L Jf L E ai_o
Vi

- Poisson equation:
v [no(r) ¢] no(r)(¢ )=n .
B | T.(» ’ ,
n,(r) Y

- Initial condition: e (*>Y)) = (MT(F))Q P(—Zz(r)) c%.‘)lv\u\




Numerical Method

In the uniform field case, the Liouville theorem is applicable
~ v, Jv
I

V, Ve +—+—L =0
0z oy,

Hence the Vlasov equation can be written in conservative form:

L (chf)+—( f)+- ( £)=0

ot

ot
2nd and 3™ order TVD Runge-Kutta. 2" order scheme written below:

n+1_(,f1+JF2)
I

Time evolution for Jf - —divf

fi=f"+At-f"
/s =f" +At'f1'
=/ KAUST
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Numerical Method

For numerical stability, it was empirically found that the following form of the
equations leads to a much more robust and stable numerical simulations
and requires no filtering (&f numerics on full-f equation)

f'=1F =Tt

8f’ / (9”U||f, | c%“f

ot Vi-vilf 0z ol 2 =0
HON G Y|

S = Boly | T o) 2|~ BT
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Numerical Method Cont.

- Finite volume discretization:

F. i+l,j - F, i—l,j
af_an_ 2 2

ox  ox Ax

C

-High order upwind discretization

1st, 3rd, 5th and 7th order options in the code
-Central finite difference discretization

2nd 4t order, 24 and 4t order tuned finite difference options in the code
- Example: 5" order upwinding flux calculation:

1 | 13 /. 47 N 9 . | :
F(HE)WF(Z_z)_aF(l_1)+5F(1)+2_0F(1+1)_2_OF(1+2) if ¢ >0
1 13 47 9 1

%F(H3)—5F(i+2)+5F(i+1)+2—0F(i)—2—0F(i—1) ifc<0

References: 1) Hill and Pullin, J. Comput. Phys. 2004, for tuned finite differences

2) Pirozzoli, J. Comput. Phys. 2002. for upwind-biased fluxges — , KAUS



Numerical Method - Dispersion & Dissipation !

» Drift-kinetic PDEs have no natural dissipation
— Unless collision operator is included
* In the absence of physical dissipation (except Landau damping), we may

resort to “numerical” dissipation to provide high-frequency cut-off (Note that
the centered finite differences have no numerical dissipation)

* For 1st, 3rd, 5th and 7th order upwind methods, the dissipation and
dispersion characteristics are shown in the fiaure below

Order 1
Order 1
I 1 Order 3 --------
Real part > dispersion SIS e
B T e LAl T R Order 5
o0 N - - Order 5
~.  Order7 -------
Tr .. Order7 -
0.5 -
/""
5 >
g 0 :"‘:""' B ’-‘"--'4"--".,’._i“j__'.'.'“";".'." yveenw Sia AL
Y o T e
-0.5 -

imaginany part > dissipation | e S

-1.5

-2

L | 1 1 i oreeaa o o
0 0.5 1 1.5 2 2.5 3 35 e V) , KALIS |



Poisson Solver
Average on z and subtracted from original Poisson equation

—Vl-nO(I/)VL<¢>]=<R> R =n, —n,
B 0P =¢p—<¢ >

+n0(r)(5(/§=R—<R>

_v, [ g s o)
¢ r

“| B

Poisson: —VL[aVL¢]+ b(¢—<¢>)= n,—n, , wWhere q= n,(r)

B
Fourier expansion: b M)
T
$(r,0.2)= 'S 9" () exp(imO) explinz) )
Results in a penta-diagonal solve:
AP(i=2)+ Be(i-1)+ Co(i)+ Dp(i + 1)+ E¢(i +2) = R

-



Poisson Solver Cont.

_ a(r) B 1 (da(r) N a(r)) _ 4a(r) N 2 (da(r) N a(r)
12Ar*  12Ar\ dr r 3ArY  3Ar\ dr r )’
C - Sa(rz) N n’a(r) +b(r) Do_ 4a(r2) ~ 2 (da(r) N a(r) ’
2Ar 3Ar 3Ar\ dr r
a(r) 1 (da(r) a(r)
“1oA T 12Ar( ar | 7 )
Together with Neumann C+B D+A E
and Dirichlet B-A C D E
boundary condition: A B C D E
9;51' =
use 4 order finite difference B C D E
scheme to solve 1D linear A B C D-E
system for the Fourier modes A B—E~C-D
with a fast penta-diagonal solver
= , KAUS
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Numerical Results!
* Domain: [0:15] x [0:211] X [0:1500] x [-8:8]
* Mesh resolution: 256x256x32x256 (512 procs Shaheen)
* Time step dt=0.1
« 4% Order tuned centered finite difference
* Density and temperature profiles
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Numerical Results — Higher Order Moments!

Heat Flux

12e-05 T T
Ath Ordar TCD  =——
e IS >< >
= Linear / \ Nonlinear
32-06 {
% 6c-06
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A 500 1000 1 ST 20R0 2500 JR0 3500 4080 4500
t

0

« The time evolution of the heat flux: O(z) —%ffvlvaCr ;i—j@dv,.
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Numerical Results - Distribution Function!

t=0 t=1600 t=2000

Constant coordinate
surfaces visualized
r=2, z=0, 6=1r
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Numerical Results - Potential!




Energy conservation:

Variation of the kinet‘i}czenergy:
I
OE ;, =fmi7(f_feq)dVdv|
Variation of the potential energy:
q.
6€p0t = Elf(nz - nO)WV
Conservation of the total energy

0¢,, = 0g,, +0¢ , = constant
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Numerical Results - Conservation!

Relative Mass Conservation

2606 , T
/\ 4th Ordar TCD ——
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Numerical Results — Energy Conversion!

Energy Conversion Rate

0.002
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0.004

dE/dt

0.006

.008

0.01

0.012

0 500 1000 1500 2000 2500 X000 4500 4000 4500 l
t \

ST



KE{K)

Numerical Results - Energy Spectrum!
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Vlasov-Poisson System — lll-posedness

From the numerical results, and in particular the energy spectrum, we
observe generation of small scales

What is the physical cut-off?

Claim: The drift-kinetic Vlasov-Poisson system of equations is scale-free
— x> ax, t=>at’, B>B/a, =Q’/a?, E>E/a, f=F, n=n’, v|..v),
— With this transformation the equations are unchanged

In the nonlinear regime, there is no physical cut-off for the small scales.
The system of equations is ill-posed and requires either a physical cut-off
mechanism or a numerical regularization

Without regularization the generation of small scales proceeds ad-infinitum

Convergence with mesh refinement will not be achieved

In fact, after a certain critical time the code ought to blow up as energy keeps piling at the
Small-scales

Frequently the phrase “velocity space filamentation” is used (see, for example, Klimas,
JCP 1987 and references therein for a discussion of this)

Tatsuno et al. (PRL 2008) introduce a non-dimensional number D (a la Reynolds
number) to characterize the scale separation in gyrokinetic turbulence

o ! ¢ ] /5 1 | .
vie . 1 _pows p= L <P KAUST
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Vlasov-Poisson System — Regularization

A Laplacian “viscosity” term in the Vlasov equation
— Motivated by shock-hydrodynamics

— Viscosity coefficient depends on the local gradients so that in relatively smooth regions
this term is inactive

— Results presented so far used this regularization

A hyperviscosity term in the Vlasov equation
— Motivated by hydrodynamic turbulence simulation literature
— 4 order hyperviscosity term which provides a numerical cut-off at high wave numbers.

 Employed, for example, A. Barion Navarro et al. , Free Energy Cascade in
Gyrokinetic Turbulence, PRL, 2011. Also by Howes et al. PRL 2008

Implicit numerical dissipation provided by upwinding methods

Collision physics model

— Example: Howes et al. (PRL 2011) work on gyrokinetic simulations of solar wind used
collision models developed by Abel (PoP 2008) and Barnes (PoP 2009)

— Most of the recent papers acknowledge that we need collisions to provide the physical
cut-off

=P KAUST
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Model Collision Operator

» (Generalization of the operator defined in Rathman and

Denavit
o - Jof .Gf_(af)

—+VGC.VJ_f+V“ +,
ot 0z ov ot

where the collision operator: 3 (%) =i[yv”f+pai(yf)]

3 0 v, I
Ly C . where C = ( 3<v” 2>) 2y, L) cou Va va2
(2<V”2>+v”2)2 =8—V”(VV||f)+Da—v”2<Vf)

- D= <yv||2>/<y> where (*) =f°ded|y
« 4t order central difference for discretization

£ - - L +84 -8/, + 1,

124
n=—f2+16f1—30f()+16f_1—f_2 - KALIS
/ 12/ ~ ‘



Regularization of Central FD Scheme!

Qm
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Comparing Central vs. Upwind!

Heat Flux [256x256x32256)
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Comparing Central vs. Upwind!

Central

AUST



Central
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Distribution function f(7.5,3'|T/2,0,V”)
Central vs. Upwind!

Curve Cycle: 0
DB: outputV 002000005 —NarFdistp
Cycle:0 Time:0
— \erFdistp
0.0
3.0

Distance

t=2000
t=4000

Good agreement until early non-linear stage. Upwind method gives smoother

distribution function at late times compared with central FD.




Kinetic Energy Spectrum: Central vs. Upwind!

Kinetic Energy Spectrum
0.1
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Good agreement up to k=60-70. |
Upwind method results in steeper spectrum for high k =) KAUST




Kinetic Energy Spectrum: Mesh Resolution!
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Radial Electric Field: Different Methods
and Mesh Resolutions!

Maximum Radial Electric Field
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Heat Flux: Comparison of Order!

Heat Flux. Different Order Schemes. 128x128x32x128 mesh
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Hydrodynamics Turbulence - Primer
Central idea

— For high Reynolds numbers, there exists a range of scales (aka
the inertial range) in which effects of viscosity, boundaries, and
large scale structures. Dimensional analysis leads to the well-
known universal power-law spectrum (Kolmogorov 1941)

Ek) = ¢, £ k33
« DNS: Direct Numerical Simulation
— All scales, i.e. turbulent fluctuations resolved up to the
Kolmogorov scale where dissipation takes place
— Computationally expensive for large Reynolds numbers
« No of grid points scales as Re%*

- LES: Large Eddy Simulation
— Only those turbulent fluctuations resolved as determined by the

mesh resolution. Scales smaller than the mesh, i.e. sub-grid-
scales must be modeled

US i kausT
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Filtering the Navier Stokes Equations

« Consider a filter G,(x)
— For example a Gaussian filter G§“(x) = [6/(ntA?)]*? exp(—6x%/A3?).
« Convolve the velocity field with the filter (~ below indicates the
convolved velocity field)
— A is the filter width below which the scales are eliminated

* The resulting equations, which are amenable to numerical
discretization at spatial resolution A, are

1 . X
i + -V = —=Vp + vWaii Vo4, Ve = 0

P

* The additional term above dubbed the “SGS (sub-grid-scale)”
stress tensor is

™= wu, — U,

— SGS stress tensor must be modeled in terms of the resolved (filtered)

VeIOClty field Leonard, Adv. Geophysics, 1974

Pope, “Turbulent Flows”, Cambridge, 2000
Rogallo & Moin, Ann. Rev. Fluid Mech, 1984 — ,l, K/\[JS [
Lesieur & Metais, Ann. Rev. Fluid Mech, 1996 e’z '




“‘LES” for Kinetic Equations

* Present work explores applying similar ideas to kinetic
equations (Vlasov, Fokker-Planck)

— Question: Can we filter the 6D kinetic equation and derive
analogous SGS terms which must be modeled if all scales are

not resolved?
— Benelfit: It is likely that even a modest reduction in size may
result in vast savings in computations
0
(E +vx B)— Ja

* Filter the kinetic Ofa
Ng ov

equation o TV Via+t
f=F+f Tz/GA(w—a:’,v—v')fda:'dv’

= Ca,,B(fa)

of =
§+v-v_f‘|‘

Extra term resulting from
correlations between sub-grid
quantities; a’ contains sub-grid

magnetic and electric fields

') KAUST

()




Examining the SGS terms

Define =71+ /" _
the filtered field has f = fand f =0

Filtered Vlasov equation: (v, =v)

_J,;_(m;cf)+1 J (chgf)F (“f)+ J ||f)+SGS=o

Calculate the last three SGS terms

SGS‘__[@ "Gc@f_;GD]’r '(;TE}f_‘}f:

N—
' —

=) KAUS



Numerical Results: SGS Terms

«  SGS terms evaluated by filtering the simulation results
— Filter is a “sharp cut-off” in Fourier space k=16

SG8
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SGS Terms: Comparison of Order

Sub-grid-scale Term 1. Mesh 128x128x32x128. Sharp Filter k_ =16
1e-05
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After t>2500 fraction of SGS terms compared with fv is in excess of 20-30% KAUSI
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SGS Terms: Mesh Resolution
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Summary & Future Work

- Numerical results presented from a recently developed Eulerian Vlasov
code

- High-order fluxes with 4th order Poisson solver

- Regqularization (either diffusion/hyperdiffusion/upwinding/model collisions)
required for code stability

- A true DNS will require cut-off provided by physical collisions which must be
resolved

- Presented preliminary estimates of SGS terms which are in excess of
20-25%.
- Under-resolved simulations will miss this contribution unless modeled

- Back-scatter effects from fine to coarser scales will render these missed SGS
terms even more important

- Main challenge: Developing physically accurate models for SGS terms
in terms of resolved quantities especially because cascade to fine scales
is not as straightforward as in hydro turbulence

- Future Work
- Extend to 5D gyrokinetic
- More diagnostics and quantification of SGS terms - ) , KALIST
- Develop SGS models gé
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