
Introduction Discretizations Solvers Jacobian Construction Preconditioning Results Discussion

A Fully Implicit Newton-Krylov-Schwarz Method for Tokamak
MHD: Jacobian Construction and Preconditioner Formulation

Daniel R. Reynolds1, Ravi Samtaney2, Hilari C. Tiedeman1

[reynolds@smu.edu, ravi.samtaney@kaust.edu.sa, htiedeman@smu.edu]

1Department of Mathematics, Southern Methodist University
2Mechanical Engineering, King Abdullah University of Science and Technology

September 9, 2011
22nd International Conference on Numerical Simulation of Plasmas

Introduction Discretizations Solvers Jacobian Construction Preconditioning Results Discussion

Target Applications

Pellet Injection Fueling: [Samtaney et al, Comp Phys Comm, 2004]

Shoot hydrogen pellets into plasma at high velocity.

Interested in location of mass deposition.

Pellet motion O(104) slower than fastest waves.

Pellet size O(104) smaller than reactor.

Edge Localized Modes: [Evans et al, Nature Physics, 2006]

Disruptive instability that occurs during
high-confinement mode.

Can damage wall due to rapid energy discharge.

Controlled ELMs may stabilize plasma.

Can be induced by pellet injection.

Require large-scale, long-time simulations
in tokamak geometry.

[images: Park & Strauss, Japan Atomic Energy Agency, Nature]

Introduction Discretizations Solvers Jacobian Construction Preconditioning Results Discussion

Visco-Resistive MHD Model

We start with the visco-resistive MHD equations in cylindrical coordinates,

∂tU + 1
r ∂r(rF(U)) + 1

r ∂ϕG(U) + ∂zH(U) = S(U) + ∇ · Fd(U), (1)

where U = (ρ, ρur, ρuϕ, ρuz, Br, Bϕ, Bz, e)
T ,

F =
(
ρur, ρu2

r + p̃−B2
r , ρuruϕ −BrBϕ, ρuruz −BrBz , 0,

urBϕ − uϕBr, urBz − uzBr, (e+ p̃)ur − (B · u)Br
)

G =
(
ρuϕ, ρuruϕ −BrBϕ, ρu2

ϕ + p̃−B2
ϕ, ρuzuϕ −BzBϕ,

uϕBr − urBϕ, 0, uϕBz − uzBϕ, (e+ p̃)uϕ − (B · u)Bϕ
)

H =
(
ρuz , ρuruz −BrBz , ρuzuϕ −BzBϕ, ρu2

z + p̃−B2
z ,

uzBr − urBz , uzBϕ − uϕBz , 0, (e+ p̃)uz − (B · u)Bz
)

and p̃ = p+ B·B
2 , e = p

γ−1 + ρu·u
2 + B·B

2 .

r

ϕ

z

S(U) is a local source term in the ρur, ρuϕ and Bϕ equations, and ∇ · Fd(U)
adds diffusive components (resistivity, viscosity, heat conduction).

Introduction Discretizations Solvers Jacobian Construction Preconditioning Results Discussion

Mapped Grid Tokamak Geometry

We then map the rectangular (r, z) poloidal cross-section to a curvilinear grid:

r

η

ξ

ϕ

ϕ

z

Initial flux surfaces ψ = ψ0ξ are determined from a separate calculation.

Cylindrical coordinates (r, ϕ, z) are mapped to the new system (ξ, ϕ, η):

ξ = ξ(r, z), η = η(r, z), ϕ = ϕ (cylindrical → mapped),

r = r(ξ, η), z = z(ξ, η), ϕ = ϕ (mapped → cylindrical).

These mappings have Jacobian determinants

J = (∂ξr)(∂ηz)− (∂ηr)(∂ξz), J−1 = (∂rξ)(∂zη)− (∂rη)(∂zξ).

Introduction Discretizations Solvers Jacobian Construction Preconditioning Results Discussion

Mapped Grid Equations

With this mapping, we rewrite (1) in the tokamak domain as

∂tU+ 1
rJ

[
∂ξ(rF̃(U)) + ∂η(rH̃(U)) + ∂ϕ(G̃(U))

]
= S(U) +∇ · F̃d(U).

Here, the modified fluxes are

F̃ = J (∂rξ F+ ∂zξ H) = ∂ηz F− ∂ηr H,

H̃ = J (∂rη F+ ∂zη H) = ∂ξz F− ∂ξr H,

G̃ = JG.

Similar transformations are required for the diffusive terms, ∇ · F̃d(U).

Left: poloidal
cross-section and
mapped grid mesh.

Right: toroidal tokamak
domain, with slice
removed to show grid
structure.

Introduction Discretizations Solvers Jacobian Construction Preconditioning Results Discussion

Finite Volume Spatial Semi-Discretization

We discretize in space using a second-order finite volume method, with all
unknowns U located at cell centers.

Due to our (r, z) → (ξ, η) mapping, this results in a 19 point nearest
neighbor stencil in the domain interior (left).

At domain boundaries ξ=ξmin and ξ=ξmax, second order accuracy
requires a one-sided stencil (center).

In 2D, second-order accuracy requires a 9 point stencil (right).

r

z

ϕ

r

ϕ
z

z

r

Introduction Discretizations Solvers Jacobian Construction Preconditioning Results Discussion

Fully Nonlinearly Implicit Time Discretization

Due to strong stiffness within the poloidal plane, that is exacerbated by
viscous/resistive effects, we discretize implicitly in time:

We write the spatially semi-discretized PDE system as ∂tU = R(U).

We then define either an implicit θ method for tn → tn+1

Un+1 −Un −∆tn+1 [θR(Un+1) + (1− θ)R(Un)
]
= 0,

or an implicit BDF method [cvode]

Un+1 − β0∆tn+1R(Un+1)−
q−1∑

l=0

[
αlU

n−l + βl∆tn+1R(Un−l)
]
= 0.

Denoting g as a vector of data from previous solutions, and γ as either
θ∆tn+1 or β0∆tn+1, we define an implicit nonlinear residual function,

f(U) ≡ U− γR(U)− g = 0,

that we must solve at each time step to evolve the solution.

Introduction Discretizations Solvers Jacobian Construction Preconditioning Results Discussion

Inexact Newton-Krylov Nonlinear Solver with sundials

We solve ‖f(U)‖ < ε using an inexact Newton Krylov method [kinsol], where
at each iteration an update sk is found through solving the linear system,

J(Uk) sk = −f(Uk), where J(Uk) ≡
∂f
∂U

(Uk).

A Krylov method approximates the Newton update by finding an optimal sk
from Kl(J, f), a rank l approximate basis for Col(J).

To build Kl, the method only requires products, J V, approximated using f :

J(U)V ≈ [f(U+ σV)− f(U)] /σ, with σ “small.”

Due to this nesting of iterative algorithms, use of sundials only requires:

(a) Encapsulation of a data structure for the vector U.

(b) User-defined vector operations on U (e.g. axpy, 2-norm, max).

(c) A user-supplied routine for f(U).

[Dembo et al., 1982; Saad & Schultz, 1986; Brown & Saad, 1990; . . .]

Introduction Discretizations Solvers Jacobian Construction Preconditioning Results Discussion

Preconditioner Acceleration

Although we can construct a fully implicit solver out of these simple
components, scalability depends on how rapidly these iterations converge.

For a range of PDE problems, Newton convergence has been proven to be
mesh independent [Weiser et al. 2005].

Unfortunately, Krylov convergence does depend on the mesh.

We use a preconditioner P ≈ J−1 to help accelerate Krylov convergence.
We employ the right preconditioner variant,

Js = −f , ⇔ JPP−1s = −f , ⇔ (JP)w = −f ,
s = Pw,

since it does not change the units of the linear residual like the left variant,

Js = −f , ⇔ PJs = −P f , ⇔ w = −P f ,
(PJ) s = w.

However, most P require the entries of J , which we don’t yet have.

Introduction Discretizations Solvers Jacobian Construction Preconditioning Results Discussion

Jacobian Construction with OpenAD

Our complex model, changing stencil, and a desire to precondition using
reduced stencil approximations rendered analytical Jacobians intractable. We
instead interfaced with the automatic differentiation tool OpenAD:

AD tools are source code translators. You mark the dependent &
independent variables, and the AD tool produces new code implementing
the derivatives of your routine.

Generally error-free, and almost as efficient as hand-coded routines.

Traditionally each tool has been specific to a programming language, with
most tools built for simply-structured languages such as F77 and C.

The OpenAD differentiation engine is language independent, with
interfaces that work with F77, F90, C and C++.

The F90 interface even allows module-based object oriented programs.

OpenAD is open-source, and is supported by NASA, DOE and NSF.

Introduction Discretizations Solvers Jacobian Construction Preconditioning Results Discussion

Code Preparation

To reconfigure our R(U) routine to more optimally interface with OpenAD:

Our FV stencil only requires local support, but since AD computes all
derivative information, most derivative values would be zero.

Created a clone, R̃i(Ũi), that calculates one spatial location, xi, of R at
a time, using only the 19 point stencil of unknowns, Ũi, surrounding xi.

Required special care to properly modify the patch Ũi, based on whether
xi is in the domain interior or boundary, & whether problem is 2D or 3D.

We then processed R̃i(Ũi) to generate a Jacobian routine, ∂R̃i

∂Ũi
(Ũi).

Also generated 2D versions, and routines using reduced stencil approximations
(below), to enable a hierarchy of Jacobians of varying cost and accuracy.

ϕ
z

r

ϕ
z

r

z

r

Left: 11 pt 3D stencil.

Center: 7 pt 3D stencil.

Right: 5 pt 2D stencil.

Introduction Discretizations Solvers Jacobian Construction Preconditioning Results Discussion

OpenAD Results

We compared these against a simple finite-difference Jacobian approximation,

[J(U)]i,j = δi,j −
γ

σ

[
R̃i(Ũi + σej)− R̃i(Ũi)

]
+ O(γσ), σ = 10−8,

and measured numerical accuracy and average wall-clock time per spatial cell.
Finite difference error values were calculated using γ = 1.

Dimension Stencil AD Time FD Time FD Error

3 19 pt 4.728e-4 2.868e-4 9.996e-5
3 11 pt 4.201e-4 1.452e-4 1.579e-4
3 7 pt 3.947e-4 8.085e-5 1.259e-4
2 9 pt 2.476e-4 1.528e-4 5.015e-6
2 5 pt 2.165e-4 4.887e-5 1.652e-5

FD approach was marginally faster than AD.

FD resulted in a significant loss of accuracy compared with the AD
routines that are accurate to near machine precision.

For further details, see [Reynolds & Samtaney – preprint].

Introduction Discretizations Solvers Jacobian Construction Preconditioning Results Discussion

ADI-split Preconditioner, PADI

Our first preconditioner uses an ADI-split approach, solving periodic,
block-tridiagonal matrices along each of the ξ, η and ϕ directions,

Js = (I − γ (J1 + J2 + J3)) s

≈ (I − γJ1) (I − γJ2) (I − γJ3) s ≡ P−1
ADI s.

This may be applied, y = PADIz, using three 1D solves:

w = (I − γJ1)
−1z → x = (I − γJ2)

−1w → y = (I − γJ3)
−1x.

Attractive for structured grids, since 1D solvers can be very scalable per iteration.

1 8 64 512 4096
3.0e−4

3.6e−4

4.2e−4

4.8e−4

5.4e−4

6.0e−4

Processors

Ru
n

Ti
m

e
(s

)

Weak Scaling of Periodic Banded Solver

Weak scaling: each process owns a 643 grid; we
increase the number of nodes in one direction.

Parallelized via pipelining: each of the (Nξ×Nη)
ϕ-directional systems are solved asynchronously
with sequential parallel algorithms.

Requires approximate stencils (7 and 5 point) to
enable decoupling along different directions.

Introduction Discretizations Solvers Jacobian Construction Preconditioning Results Discussion

Restricted Additive Schwarz Preconditioners

We also use restricted additive Schwarz methods [Cai & Sarkis 1999]. Here,
subdomain-local portions of J are solved separately on each process,

PRAS =
p∑

i=1

R̂T
i J̃−1

i R̃i.

Ωi ⊂ Ω is extended to overlap with neighbors, Ω̃i.

R̃i restricts Ω to the extended subdomain Ω̃i.

J̃−1
i is performed on Ω̃i using SuperLU.

R̂T
i injects the portion of Ω̃i owned by Ωi back into Ω.

Preconditioners:

* PRAS uses the full 19 point 3D stencil.

* PRASp and PRASp5 are poloidal-only, and use the 9
and 5 point 2D stencils, respectively.

* We also allow variable overlap widths.

Introduction Discretizations Solvers Jacobian Construction Preconditioning Results Discussion

Hybrid Poloidal/Toroidal Preconditioners

We lastly consider hybrid P , using both of the preceding approaches.

We employ our overlapping RAS solver for poloidal subsystems, and follow up
with a parallel, periodic, block-tridiagonal solve in the ϕ direction only,

PH11 = (I − γJϕ)
−1 PRASp, [uses 11 pt approximate stencil]

PH7 = (I − γJϕ)
−1 PRASp5. [uses 7 pt approximate stencil]

These should be more efficient than PRAS (decouples the ϕ direction),
and more accurate than PADI (tighter coupling within poloidal plane).

Key comparison will be PH11 vs PRASp and PH7 vs PRASp5, to test the
necessity of preconditioning in toroidal direction at all.

Introduction Discretizations Solvers Jacobian Construction Preconditioning Results Discussion

Pellet Injection Testing Setup

We examine these on a 3D pellet injection model problem:

BCs: reflecting at ξ = ξmax, no-flux at ξ = ξmin, periodic in η and ϕ.

Initial Solovev equilibrium, with 〈ρ〉=3.32e-8 kg
m3 , 〈p〉=7.96e5 Pa,

〈T 〉=5.76e9 K, 〈|B|〉=1 T, 〈|u|〉=4.90e6 m
s and 〈e〉=7.96e5 J

m3 .

Add a small high density/pressure region representing an ablated pellet.

Two parameter regimes: base tests use Lundquist = Reynolds = 103, high
Lundquist tests use Lundquist = Reynolds = 104. All use Prandtl = 0.7.

Since initial transport of pellet mass is the most difficult phase in this
calculation, all tests only evolve the first few time steps.

Solver parameters:

θ = 1,

ηconst = 10−3,

ε = 10−5,

BiCG-Stab Krylov solver,
maximum of 200 iterations,

Set up P once and reuse
throughout calculation.

Introduction Discretizations Solvers Jacobian Construction Preconditioning Results Discussion

Small-Scale Serial Tests

Tested I, PADI , PRAS , PRASp, PRASp5, PH11 and PH7, with overlap width 2.
Meshes were 16×16×16, 32×32×16, and 64×64×16 (Nξ ×Nη ×Nϕ).

PRAS only effective on
small problems (memory
& factorization costs).

PADI only effective in
high Lundquist (poloidal
coupling in µ, η terms).

I requires more Krylov,
but remains competitive
due to simplicity.

PRASp vs PH11 and
PRASp5 vs PH7 are
indistinguishable on such
small problems.

Introduction Discretizations Solvers Jacobian Construction Preconditioning Results Discussion

Medium-Scale Parallel Tests – Krylov

Tested I, PRASp, PRASp5, PH11 and PH7 with overlap widths of 2 and 4. Weak
scaling with 32×32×16 base grid per processor.

Questions:

(a) How does RAS overlap width affect P?

(b) How do stencil approximations affect P?

(c) Are toroidal effects important in P?

I not visible, with {16, 18, 36, 34, 44, 96, 106}
and {32, 40, 102, 108, 120} iterations.
Diverged for two largest high Lundquist runs.

RAS overlap (solid vs dashed): higher overlap
typically requires fewer Krylov iterations.

Reduced stencil approximations
(circles/squares vs triangles/stars): reduced
stencils require more Krylov iterations,
especially in lower Lundquist regime.

Toroidal P (squares/stars vs circles/triangles):
hybrid P perform as well or better than
poloidal-only P , though difference is small.

Introduction Discretizations Solvers Jacobian Construction Preconditioning Results Discussion

Medium-Scale Parallel Tests – Run Time

Krylov does not fully predict efficiency, since each P has different cost. P costs per
iteration (lowest to highest): I < PRASp5 < PRASp < PH7 < PH11. Average
runtime per Newton step is a better measure.

I is fastest for small tests, but rapidly slows,
eventually failing in higher Lundquist regime.

Other P times remain constant, due to
advection dominance of PDE model, dominant
cost of P factorization.

RAS overlap (solid vs dashed): higher cost of
increased overlap nullifies faster convergence.

Reduced stencil approximations
(circles/squares vs triangles/stars): lower
complexity of reduced stencils compensates for
their slower convergence.

Toroidal P (squares/stars vs circles/triangles):
little difference between poloidal-only and
hybrid P , due to fast toroidal solve.

Introduction Discretizations Solvers Jacobian Construction Preconditioning Results Discussion

Summary of Current Results

Jacobian construction need not be daunting, with free, high quality, robust
AD tools that work well with modern programming languages.

While preconditioning is necessary for a robust, fully implicit solver, our
most effective preconditioners employ simplifying approximations designed
to decrease their memory and factorization requirements.

Our most efficient overall approach was PRASp5,2:

Approximates the 19 pt 3D stencil with a simple 5 pt 2D version within
each poloidal plane,

Solves the resulting systems using a restricted additive Schwarz method,
with overlap 2.

This required the most Krylov iterations per Newton step of all
preconditioners, but its increased efficiency proved more important.

The inclusion of an additional toroidal solve did not significantly slow
down PH7,2, and could allow increased flexibility when solving problems
with more significant toroidal stiffness.

Introduction Discretizations Solvers Jacobian Construction Preconditioning Results Discussion

Ideas for Future Work

Plans for extending this work:

Tune OpenAD usage to allow only the desired 5 or 7 point stencil,
instead of allowing flexibility for 19 point version.

Shared-memory parallelization of OpenAD-generated code for more
efficient hybrid MPI/OpenMP parallelism on upcoming architectures.

Incomplete LU solver for J̃−1
i to reduce memory/factorization costs.

Adaptive recomputation of P , based on balancing large calculation &
factorization time against increased iterations from using a stale P .

Multi-level solver for poloidal-plane problems, for improved scalability with
increasing mesh size.

Introduction Discretizations Solvers Jacobian Construction Preconditioning Results Discussion

Thanks and Acknowledgements

Collaborators:

Ravi Samtaney, KAUST

Carol S. Woodward, LLNL

Students:

Hilari C. Tiedeman, SMU

David J. Gardner, SMU

Support:

Frameworks, Algorithms and Scalable Technologies in Mathematics
(FASTMath) SciDAC

Towards Optimal Petascale Simulations (TOPS) SciDAC

Applied Partial Differential Equations (APDEC) SciDAC

SMU Center for Scientific Computation cluster

	Introduction
	Target Applications
	Visco-Resistive MHD Model

	Discretizations
	Space
	Time

	Solvers
	Newton-Krylov

	Jacobian Construction
	OpenAD usage
	OpenAD results

	Preconditioning
	ADI
	RAS
	Hybrid

	Results
	Serial Tests
	Parallel Tests

	Discussion
	Summary
	Future Work
	Thanks

