A Fully Implicit Newton-Krylov-Schwarz Method for Tokamak
MHD: Jacobian Construction and Preconditioner Formulation

Daniel R. Reynolds?, Ravi Samtaney?, Hilari C. Tiedeman'

[reynolds@smu.edu, ravi.samtaney@kaust.edu.sa, htiedeman@smu.edu]

1Department of Mathematics, Southern Methodist University
2Mechanical Engineering, King Abdullah University of Science and Technology

September 9, 2011
22"? |nternational Conference on Numerical Simulation of Plasmas

Introduction
°

Target Applications

Pellet Injection Fueling: [Samtaney et al, Comp Phys Comm, 2004]
@ Shoot hydrogen pellets into plasma at high velocity.
@ Interested in location of mass deposition.
o Pellet motion O(10*) slower than fastest waves.

o Pellet size O(10*) smaller than reactor.

Edge Localized Modes: [Evans et al, Nature Physics, 2006]

o Disruptive instability that occurs during
high-confinement mode.

o Can damage wall due to rapid energy discharge.
o Controlled ELMs may stabilize plasma.

o Can be induced by pellet injection.

Require large-scale, long-time simulations
in tokamak geometry.

[images: Park & Strauss, Japan Atomic Energy Agency, Nature]

Plasma pressure

H

Pedestal region

Collapse of the
pedestal by ELM
(decrease plasma
pressure)

Ejection of the
core plasma
by ELM

Plasma Plasma
center Plasma radius surface

Introduction Discretizations So J n Construction

(o] le]e]

Visco-Resistive MHD Model

We start with the visco-resistive MHD equations in cylindrical coordinates,
U + 1o,(rF(U)) + 10,G(U) + 0.H(U) = S(U) + V- -Fy(U), (1)

Where U = (pa puTypu@7pusz7‘7Bkﬂsz7e)T'

F = (Pury P'Uf% +p— 337 PUrly — Bngay puru, — BrB;, 0,
'U»TBga - u«me ur By — uz By, (e +ﬁ)u7" - (B . u)B?“)

G = (puw, purthy — BrBy, pui +p— Bi, puzuy, — B: By,
UpBr —urBy, 0, up Bz —uzBy, (e +P)uy, — (B - u)BLp)

¢

H = (puz, puruz — BBz, puzu, — B.By, pu? +p — B2, r
uzBr —urBz, uzBy —uypBz, 0, (e+p)u. — (B- u)Bz)

nd pptBE, = ki igeyBE

S(U) is a local source term in the pu,, pu, and B, equations, and V - F4(U)
adds diffusive components (resistivity, viscosity, heat conduction).

z ?

o Initial flux surfaces ¢ = o€ are determined from a separate calculation.
@ Cylindrical coordinates (r, ¢, z) are mapped to the new system (&, ¢, n):
§=£&(rz), n=n(rz), ¢=¢ (cylindrical - mapped),

r=rmn), z=z(&mn), ¢=¢ (mapped — cylindrical).

@ These mappings have Jacobian determinants

T = (0er)(0n2) = (057)(Oc2), T~ = (0:€)(9:1) — (9rm)(0:€).

Introduction
ooe

Mapped Grid Equations

With this mapping, we rewrite (1) in the tokamak domain as
U + 77 [0:(rF(U)) + 0, (rH(U)) + 8,(G(U))| = S(U) + V- F4(U).
Here, the modified fluxes are
F=JGEF+0,6H) = 9,2 F — 9,r H,
H=J@nF+8:nH) = 92 F— 9 H,
G = JG.

Similar transformations are required for the diffusive terms, V - Fy(U).

Left: poloidal
cross-section and
mapped grid mesh.

Right: toroidal tokamak
domain, with slice
removed to show grid
structure.

Discretizations n Construction
[Ie]

Finite Volume Spatial Semi-Discretization

We discretize in space using a second-order finite volume method, with all
unknowns U located at cell centers.

@ Due to our (r, z) — (&,m) mapping, this results in a 19 point nearest
neighbor stencil in the domain interior (left).

o At domain boundaries £ =&min and £ =&maz, second order accuracy
requires a one-sided stencil (center).

@ In 2D, second-order accuracy requires a 9 point stencil (right).

I

SLESERC SEely

roduction Discretizations
O oe

Fully Nonlinearly Implicit Time Discretization

Due to strong stiffness within the poloidal plane, that is exacerbated by
viscous/resistive effects, we discretize implicitly in time:

o We write the spatially semi-discretized PDE system as 9, U = R(U).

o We then define either an implicit @ method for t* — ¢"**
Ut — U — AT [OR(UT T + (1 - 0)R(U™)] =0,
or an implicit BDF method [CVODE]

q—1
UnJrl _ /BOAtn+1R(Un+1) _ Z [alUnfl + ﬁlAtn#»lR(Unfl)] —0.
1=0

@ Denoting g as a vector of data from previous solutions, and +y as either
OAEt" L or BoAt™ !, we define an implicit nonlinear residual function,

f(U) = U—~R(U)—g =0,

that we must solve at each time step to evolve the solution.

e0

Inexact Newton-Krylov Nonlinear Solver with SUNDIALS

We solve ||[f(U)|| < € using an inexact Newton Krylov method [KINSOL], where
at each iteration an update si is found through solving the linear system,

of

J(Uk) S = —f(Uk), where J(Uk) = 90

A Krylov method approximates the Newton update by finding an optimal s
from K;(J,f), a rank [approximate basis for Col(.J).

(Uk).

To build K, the method only requires products, J V, approximated using f:
JU)V = f(U+0oV)—-£(U)] /o, witho “small.”

Due to this nesting of iterative algorithms, use of SUNDIALS only requires:

(a) Encapsulation of a data structure for the vector U.

(b) User-defined vector operations on U (e.g. axpy, 2-norm, max).
(c) A user-supplied routine for f(U).

[Dembo et al., 1982; Saad & Schultz, 1986; Brown & Saad, 1990; . . .]

Solvers n Construction
oe

Preconditioner Acceleration

o Although we can construct a fully implicit solver out of these simple
components, scalability depends on how rapidly these iterations converge.

@ For a range of PDE problems, Newton convergence has been proven to be
mesh independent [Weiser et al. 2005].

o Unfortunately, Krylov convergence does depend on the mesh.

o We use a preconditioner P =~ J~! to help accelerate Krylov convergence.
We employ the right preconditioner variant,

Js=-f, & JPPl's=-f & (JP)w =1,
s = Pw,
since it does not change the units of the linear residual like the left variant,

w = —Pf,

Js = —f, & PJs = —Pf, & (PJ)s = w.

@ However, most P require the entries of .J, which we don’t yet have.

Discretizations r Jacobian Construction
00 000

Jacobian Construction with OPENAD

Our complex model, changing stencil, and a desire to precondition using
reduced stencil approximations rendered analytical Jacobians intractable. We
instead interfaced with the automatic differentiation tool OPENAD:

@ AD tools are source code translators. You mark the dependent &
independent variables, and the AD tool produces new code implementing
the derivatives of your routine.

o Generally error-free, and almost as efficient as hand-coded routines.

o Traditionally each tool has been specific to a programming language, with
most tools built for simply-structured languages such as F77 and C.

e The OPENAD differentiation engine is language independent, with
interfaces that work with F77, F90, C and C++.

@ The F90 interface even allows module-based object oriented programs.

o OPENAD is open-source, and is supported by NASA, DOE and NSF.

Introduction Discretizations s Jacobian Construction
O ole O Oceo

Code Preparation

To reconfigure our R(U) routine to more optimally interface with OPENAD:

o Our FV stencil only requires local support, but since AD computes all
derivative information, most derivative values would be zero.

@ Created a clone, ﬁl(ﬁl) that calculates one spatial location, x;, of R at
a time, using only the 19 point stencil of unknowns, U;, surrounding x;.

o Required special care to properly modify the patch U, based on whether
X; is in the domain interior or boundary, & whether problem is 2D or 3D.

OR;
k3

We then processed R;(U;) to generate a Jacobian routine, LG (0,).

Also generated 2D versions, and routines using reduced stencil approximations
(below), to enable a hierarchy of Jacobians of varying cost and accuracy.

‘ Left: 11 pt 3D stencil.

z 7 7 ‘ Center: 7 pt 3D stencil.

¢ ¢ . .
Right: 5 pt 2D stencil.

bian Construction

OPENAD Results

We compared these against a simple finite-difference Jacobian approximation,
Oy = 00— 2 [Ri(Ui +0e)) = Ri(0))] + O(re). o=1075,

and measured numerical accuracy and average wall-clock time per spatial cell.
Finite difference error values were calculated using v = 1.

Dimension Stencil AD Time FD Time FD Error

3 19 pt 4.728e-4 2.868e-4 9.996e-5
3 11 pt 4.201e-4 1.452¢-4 1.579e-4
3 7 pt 3.947e-4 8.085e-5 1.259e-4
2 9 pt 2.476e-4 1.528e-4 5.015e-6
2 5 pt 2.165e-4 4.887e-5 1.652e-5

o FD approach was marginally faster than AD.

@ FD resulted in a significant loss of accuracy compared with the AD
routines that are accurate to near machine precision.

For further details, see [Reynolds & Samtaney — preprint].

Introduction Discret lver cobian Construction Preconditioning
5 5 ©00

ADI-split Preconditioner, Pspr

Our first preconditioner uses an ADI-split approach, solving periodic,
block-tridiagonal matrices along each of the &, n and ¢ directions,

Js = (I—~(J1+J2+J3))s
(I—~yh)(I—~J2)(I—~J3)s = Pip;s.
This may be applied, y = Paprz, using three 1D solves:

Q

w=I—-~v21)"tz = z=U-~vk)"w — y=U—~J3) 'z
Attractive for structured grids, since 1D solvers can be very scalable per iteration.

Weak Scaling of Periodic Banded Solver

6.0e-4
° Weak scaling: each process owns a 643 grid; we
increase the number of nodes in one direction.
5.4e-4|
5 480d Parallelized via pipelining: each of the (N¢ X Ny)
g p-directional systems are solved asynchronously
= with sequential parallel algorithms.
@ 4.2e-4
3.60-4 Requires approximate stencils (7 and 5 point) to
enable decoupling along different directions.
3.0e—4
1 8 64 512 4096

Processors

Preconditioning

Restricted Additive Schwarz Preconditioners

We also use restricted additive Schwarz methods [Cai & Sarkis 1999]. Here,
subdomain-local portions of J are solved separately on each process,

P
Pras =Y RIJ 'R

i=1
o) C Qs extended to overlap with neighbors, ;.

@ R restricts Q to the extended subdomain Q.

° ji_l is performed on QZ using SUPERLU.

° RlT injects the portion of 2; owned by €; back into €.

Preconditioners:

* Pras uses the full 19 point 3D stencil.

* Prasp and Pragps are poloidal-only, and use the 9
and 5 point 2D stencils, respectively.

* We also allow variable overlap widths.

econditioning

Hybrid Poloidal /Toroidal Preconditioners

We lastly consider hybrid P, using both of the preceding approaches.

We employ our overlapping RAS solver for poloidal subsystems, and follow up
with a parallel, periodic, block-tridiagonal solve in the ¢ direction only,

Prii=(1I — 'ng(,)f1 Prasp, [uses 11 pt approximate stencil]

Prr = (I —~J,)"" Prasps. [uses 7 pt approximate stencil]

@ These should be more efficient than Pras (decouples the ¢ direction),
and more accurate than Pap; (tighter coupling within poloidal plane).

o Key comparison will be Pg11 vs Prasp and Pr7 vs Prasps, to test the
necessity of preconditioning in toroidal direction at all.

Pellet Injection Testing Setup

We examine these on a 3D pellet injection model problem:

o BCs: reflecting at £ = &aa, No-flux at & = &pin, periodic in n and .

o Initial Solovev equilibrium, with (p)=3.32e-8 %, (p)=7.96e5 Pa,
(T)=5.76¢9 K, (|B|)=1 T, (ju[)=4.90¢6 2 and (¢)=7.96¢5 ;.

Add a small high density/pressure region representing an ablated pellet.

o Two parameter regimes: base tests use Lundquist = Reynolds = 103, high
Lundquist tests use Lundquist = Reynolds = 10*. All use Prandtl = 0.7.

Since initial transport of pellet mass is the most difficult phase in this
calculation, all tests only evolve the first few time steps.

Solver parameters:
e BiCG-Stab Krylov solver,

e =1,
10-3 maximum of 200 iterations,
° = ,
flconst 5 @ Set up P once and reuse
e e =107,

throughout calculation.

Tested I, Papr, Pras, PRASp. PRASp5y Py11 and Pygr, with overlap width 2.
Meshes were 16x16x16, 32x32x16, and 64x64x16 (Ne x N, x N,,).

Krylov Iterations, 3D Pellet Injection Krylov Iterations, High Lundquist 3D Pellet Injection

107 10°
— 1 — 1 .
oo ryy oo Py e P, only effective on
RAS
A Ppys A Py
B8 Pus 58 P small problems (memory
£ |n s o[+ P o & factorization costs).
A A - - Py, -
R (S _
g =
§ - @ Pjpr only effective in
< " e high Lundquist (poloidal
!//;/—/’ ,/:% coupling in p,n terms).
Wi o o e o e
100 - Timings, 3D Pellet Injection 100 - Timings, High Lundquist 3D Pellet Injection o/ requires more Krylov,
— - — _a . ..
oo Py P oo i P but remains competitive
Lot LA P e Lot LA P e d imblici
O Py | & o P | & ue to simplicity.
¢ [Puss P,
= ot U P o ¥ P
g 0 P 09 Py
2 / o PRASp vs Pr11 and
for = w0 Prasps vs Pyt are
<
indistinguishable on such
* * small problems.
Wi o i e

10° 10°
Total Mesh Size Total Mesh size

Medium-Scale Parallel Tests — Krylov

Tested I, Prasp, Prasps, Pri11 and Py with overlap widths of 2 and 4. Weak

scaling with 32x32x16 base grid per processor. Krylov Weak Scaling, 3D Pellet Injection
— I
Questions: e Prago
(a) How does RAS overlap width affect P? pN ;"::‘1 R
. L » 6] 55 .
(b) How do stencil approximations affect P? § |4 Pugsa
5. ||™® P
(c) Are toroidal effects important in P? S mw
i”: inil
@ [not visible, with {16, 18, 36, 34, 44, 96, 106} § ,
and {32,40, 102, 108,120} iterations. L
Diverged for two largest high Lundquist runs. z/ ——
o
1 Ol = 1 2
L4 RAS overlap _(SOIId vs daShed):. hlgh.er Overlap N Krylov Weak Scaling, Highlﬁundqmst 3D Pellet Injection B
typically requires fewer Krylov iterations. —
7H L d Pl(.‘ﬁ'ﬂt
. . . .- P)mérr)
@ Reduced stencil approximations s Py

o

(circles/squares vs triangles/stars): reduced
stencils require more Krylov iterations,
especially in lower Lundquist regime.

& A Prygsy I
|| Py i
=W Py A-- < 3
Pina Sk S
o

-

Pz

Average Krylov Iterations

@ Toroidal P (squares/stars vs circles/triangles):
hybrid P perform as well or better than
poloidal-only P, though difference is small.

Processes

Medium-Scale Parallel Tests — Run Time

Krylov does not fully predict efficiency, since each P has different cost. P costs per

iteration (lowest to highest): I < Prasps < Prasp < Pu7 < Pg11. Average

runtime per Newton step is a better measure.

@ [is fastest for small tests, but rapidly slows,

eventually failing in higher Lundquist regime.

Other P times remain constant, due to
advection dominance of PDE model, dominant
cost of P factorization.

RAS overlap (solid vs dashed): higher cost of
increased overlap nullifies faster convergence.

Reduced stencil approximations
(circles/squares vs triangles/stars): lower
complexity of reduced stencils compensates for
their slower convergence.

Toroidal P (squares/stars vs circles/triangles):
little difference between poloidal-only and
hybrid P, due to fast toroidal solve.

Average Solution Time

Average Solution Time

Weak Scaling, 3D Pellet Injection

— I

O Prisn
©® Prisu

A Prass,
& A Pragss

. Py,

=W Py

10

10

Weak Scaling, High Lundquist 3D Pellet Injection

— I
pz L P!m.ﬂm
L PIH.*‘uI
= ’3{ A Pragsn
4 - A A P
‘.;’ // \\\\ PR L ES
e 7 3 - ™ B Py,
7= NN P74 [3
P/A\ 8
7 P
w

10

Processes

n Construction onditionin s Discussion
5 000

Summary of Current Results

@ Jacobian construction need not be daunting, with free, high quality, robust
AD tools that work well with modern programming languages.

@ While preconditioning is necessary for a robust, fully implicit solver, our
most effective preconditioners employ simplifying approximations designed
to decrease their memory and factorization requirements.

@ Our most efficient overall approach was Prasps,2:

o Approximates the 19 pt 3D stencil with a simple 5 pt 2D version within
each poloidal plane,

o Solves the resulting systems using a restricted additive Schwarz method,
with overlap 2.

o This required the most Krylov iterations per Newton step of all
preconditioners, but its increased efficiency proved more important.

@ The inclusion of an additional toroidal solve did not significantly slow
down Pp7,2, and could allow increased flexibility when solving problems
with more significant toroidal stiffness.

n Construction Discussion

Ideas for Future Work

Plans for extending this work:

@ Tune OPENAD usage to allow only the desired 5 or 7 point stencil,
instead of allowing flexibility for 19 point version.

@ Shared-memory parallelization of OPENAD-generated code for more
efficient hybrid MPI/OpenMP parallelism on upcoming architectures.

o Incomplete LU solver for J; ! to reduce memory/factorization costs.

@ Adaptive recomputation of P, based on balancing large calculation &
factorization time against increased iterations from using a stale P.

@ Multi-level solver for poloidal-plane problems, for improved scalability with
increasing mesh size.

Thanks and Acknowledgements

Collaborators:

o Ravi Samtaney, KAUST
o Carol S. Woodward, LLNL

Students:
e Hilari C. Tiedeman, SMU
o David J. Gardner, SMU

Support:

o Frameworks, Algorithms and Scalable Technologies in Mathematics
(FASTMath) SciDAC

o Towards Optimal Petascale Simulations (TOPS) SciDAC
o Applied Partial Differential Equations (APDEC) SciDAC

@ SMU Center for Scientific Computation cluster

	Introduction
	Target Applications
	Visco-Resistive MHD Model

	Discretizations
	Space
	Time

	Solvers
	Newton-Krylov

	Jacobian Construction
	OpenAD usage
	OpenAD results

	Preconditioning
	ADI
	RAS
	Hybrid

	Results
	Serial Tests
	Parallel Tests

	Discussion
	Summary
	Future Work
	Thanks

