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Motivation

* Conventional PIC codes rely on S e
uniform grid cells (polar, spherical) | >>>>>~~>777 7777~
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* Specific coordinate system ST ]

* Multiple grid resolutions often
required within domain

— PIC processes are very complex on
nonuniform domain (location/
weighting/interpolation)

— Dynamically evolving domain/mesh

e (Current solution:
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Miloch, et al., Phys. Rev. E, 2008

SOMETIMES A BIGGER HAMMER ISN’T THE RIGHT SOLUTION!



Mapping
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* Mapping should be:
— Smooth (at least continuous and differentiable)
— Orthogonal (preferable but not necessary)
— Well-adapted to the physical system



Differential Geometry Review

e Jacobian and its inverse:
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* (Can easily convert between covariant and contravariant in 2d:
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Elliptic Grid Generation

* Techniques using systems of PDE’s to derive coordinate
transforms are very popular for structured grid generation
— Elliptic, parabolic, hyperbolic, etc
* Advantages:
— Extremum principle
— Smoothness of solution
— ‘one-to-one’ mapping
* Disadvantages:
— System of PDE’s must be solved numerically (nonlinear solver)



Winslow’s Method (JCP 1967)

* Uncoupled Laplace equation
0 0&“

2 ca
p— p— O
Vil 0xB dxP
* Transform to logical grid
o2z
oy (= _
97(%) geagy =0

e Invert metric tensor
922 Tee — 2912 Ten + 11 Ty = 0
922 Yee — 2912 Yen + 911 Yy = 0

System of two nonlinear coupled equations —
Requires Newton-Krylov solver
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E
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Example Grids




Curvilinear Coordinate Poisson Solver

* Transform V2@ = p(z) to logical grid:

0 0P
— | fJg*’ — | = —fJIp(z) =
&SO‘ (f g 8€5> f p(x) fp(g)
« f=(1,r)is a ‘geometry factor’

— Selects azimuthal or axial symmetry

* Variational approach to discretization of Poisson equation
— Symmetric

— Positive definite
* Solvability condition: pdV =0

— Solved using Jacobi-preconditioned CG

Physical potential is now mapped onto the logical grid
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Macroparticle Equations of Motion

* On physical grid, particles obey Newton-Lorentz eqns:

dU — —
M— =F=QF

dt «

dar

— =

dt

* No existing standard for PIC with nonuniform gridding

* Require iterative cell-search algorithm for physical space
mover

* Logical choice: Can transform NL eqns directly to logical
space...BUT...

Transformed NL eqgns do not conserve phase-space area



Hamiltonian-Based Approach

 Apply contact transformation using an F,(z, P, t) generating

function: OF,
P = e
o OF
T
. N 2
K(ga 7t) = H (m(f, 7t)7p(€7 )) + a—tz

* Assume time-independent grid

— Specialize to contact transformation 5 = é’ ()

_ 1 s paps o
K—ZM(g P*PP) 4+ V()



Hamiltonian-Based Approach

—

* Apply contact transformation using an F,(Z, P, t) generating

function: . 0P
b= ox®
o OF
&= ope
- = — OF:
K(EP,t) = H (#E P,1), 5E P)) + 52
* Assume time-independent grid
— Specialize to contact transformation £ = £(&)
1 - ~ -
K = 507 (977 PPPP) + V(€)= T P)+ VI(E)

2M T
Non-separable!!!

Cannot use ‘naive’ Leapfrog integration method



Equations of Motion

* Apply Hamilton’s eqns:
., OK : 0K
£% =

P =——
oOP~ 0E
* Resulting equations of motion:
: 1
{=37 (9" Pt g7 Py)

, 1
=797 (9P + 9% P,)

. 1 8911 8912 , 3922 8V( ")
P = P, 2P: P P — =
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Field and grid quantities must be interpolated




Modified Leapfrog Integrator

* Rewrite equations of motion as:
f=Uand P=V
where
ou~  ove

oge | ppo

=0

» ML can be written Ma, = P%, o €4, , where

[ E-ErnTE P, g-§
At = : At = B = 2 B
P P =P+ AtV(E, P)

Combining,



Modified Leapfrog Features

Can be symmetrized for 2"d-order accuracy in At

—»e —»Z _)e _%

§At/2 © PAt/Q © PAt/Q © €At/2
Semi-implicit —Newton/Picard iterations required for £? P°

Proven symplectic for N degrees of freedom

Charge accumulation/field solve once per timestep

— CN and Newmark-type methods require charge accumulation/field
solve for every implicit iteration for every particle to retain accuracy!



Logical Grid Weighting/Interpolation

Particle shape 1s uniform and symmetric on logical grid

Utilizes adjoint operations
— Weighting: p(&) = Z QpS(z; — xp)
p

— Interpolation:  E(x,) = Z E;S(x), — x;)

Define Sz'p —_— S(CIZZ — Qip) and Sp@' = S(.CUp — CEZ) — Spi = Sk

p

Implemented schemes:
— Bilinear (S,)
* 4 node stencil
— Biquadratic (S,)

* 9 node stencil



Self Forces

Equations of motion require £¢(&,)
— Ideally: Interpolate E¢
— Reality: This DOES NOT produce zero self-fields at particle!

Our method:

— Interpolate £
— Interpolate .J

— Multiply — E*(&,) = E*(&,)J (&)

This method works exactly in 1d, but does not exactly cancel
self-forces 1n 2d.



Grid-free ML Test
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Sample Data

Cold plasma oscillations on a square domain
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111111

EE
=53
[l=o)

Initial Conditions: Quadratic (S2) particle shape functions with
Ne =N, =128, <N, > =225, At = 0.025,
and €., =0.1.

M
grid



Sample Data

Two-stream 1nstability on a square domain
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Initial Conditions: Quadratic (S2) particle shape functions with

N, =N, =128, <N, > =225, At = 0.025,

= 0.1, and v=[0.314, 0.314].
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Sample Data

Langmuir waves on a square domain

CU2 — (U2 —l_ 3k2vt2h
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0 1.00081 1 0.081

0.005 |1.00081/1.00148| 0.067

0.0001

0.01 |1.00644| 1.0059 | 0.053

0.015 | 1.0166 |1.01324| 0.332

0.02 |1.02601/1.02341| 0.254

— | 0.025 |1.02887|1.03635| 0.722
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Initial Conditions: Quadratic (S2) particle shape functions with
Ne =N, =128, <N, > =225, At=0.01,
€grig — U.15




Sample Data

Landau damping on a square domain
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— Uniform Grid

— Nonuniform Grid

—— Nonorthogonal Grid

I

Vih YpIC Ytheory % error
0.06 |-0.0732/-0.0774| 5.426
0.08 |-0.1453/-0.1521| 4.471
0.10 |-0.1504/-0.1589| 5.349
0.12 |-0.1311/-0.1354| 3.176
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Initial Conditions: Quadratic (S2) particle shape functions with

N =N

N

=128, <N
€ ia = 0.13, vy = 0.07

ppc

> =400, At = 0.025,




Sample Data

Cold plasma oscillations on an annulus
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Initial Conditions: Quadratic (S2) particle shape functions with
Ne =N, =64, <N >=400, At=0.05, r,/r, =4

N



Sample Data

Cold ES plasma oscillation on annulus




Conclusions

ACC-PIC method was developed to operate entirely on logical
domain

— Winslow’s method of grid generation

— Curvilinear coordinate formulation of Poisson equation
— Logical grid equations of motion

— Modified Leapfrog integrator

— Weighting/Interpolation issues

Implemented 1n 1d and 2d

Future work:
— Add time dependent grid
— Add particle management strategy
— Extend to 3d
— Include full EM physics



