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Mo2va2on	  

•  Conventional PIC codes rely on 
uniform grid cells (polar, spherical) 

•  Specific coordinate system 
•  Multiple grid resolutions often 

required within domain 
–  PIC processes are very complex on 

nonuniform domain (location/
weighting/interpolation) 

–  Dynamically evolving domain/mesh 
•  Current solution: 

–  More gridpoints… 
–  More particles… 
–  Bigger computers… 

SOMETIMES A BIGGER HAMMER ISN’T THE RIGHT SOLUTION! 

!23", and run the simulations with the following electron to
ion temperature ratios: != #5,10,20,40,60,80,100$.

We analyze obstacles with four different shapes or sizes.
Three of the obstacles represent a shape as close to being
circular as possible for the dust implementation on the square
mesh in our numerical code !Figs. 1%a&–1%c&". Their radii are
a=2.5, 1.25, and 0.75 in units of "De. As an example of an
obstacle with a different shape we have an elongated object
with eccentricity #='3 /2 !Fig. 1%d&". The obstacles are either
perfectly conducting or perfectly insulating, and are placed
well inside the simulation area.

The plasma density is n=1010 m−2, which we simulate
using approximately 2.5$105 simulation particles, for both
electrons and singly charged ions. This density corresponds
to n=1015 m−3 in the three dimensional system, and is typi-
cal for glow or rf discharge plasmas. The electron tempera-
ture is 0.18 eV. Such a temperature is found in the plasma
sheath in rf discharges that are commonly used for dusty
plasma experiments !37". The electron to ion temperature
ratio in rf discharges may be as large as !=100 in the bulk
plasma !4".

We typically run the code until it reaches steady state
conditions, typically after three ion plasma periods %i for
subsonic flows. Since the ion flow acts as an energy input to
the system, we are particularly interested in the asymptotic
charging characteristics of dust grains for fast ion flows. For
fast flows we find asymptotic conditions after approximately
nine ion plasma periods. In order to have statistically satis-
factory results, we run our code typically for 12 ion plasma
periods.

III. NUMERICAL RESULTS

We observe focusing of ions in the wake behind the dust
grain in the presence of ion drifts. Vector plots of the average
ion velocity reveal that the ion trajectories are bent toward
the focal region behind the dust grain %see Fig. 2&. The bend-
ing is stronger for insulating grains. This is shown in the

x−v phase space plots for the ions in Fig. 3. The phase space
plots refer to ions located within a narrow slice of the simu-
lation area. The width of the slice is equal %width 2.5 in units
of "De& to the diameter of the dust. The slice is centered on
the dust and oriented along the x axis. The ion flow is in the
positive x direction, and the center of the dust grain is lo-
cated at x=12.5 in units of "De. In the wake behind the
insulating dust grain, there is a significant number of ions
that have the velocity component vx parallel to the ion drift
ranging from zero to approximately the average ion drift ve-
locity vd. The strong bending of the ion trajectories behind
the dust is most visible in the velocity component vy, per-
pendicular to the drift. Here, the ions that are closest to the
dust are nearly grazing its surface and have speeds close to

FIG. 1. Illustration of dust shapes considered in the present
study. The small dots show the numerical grid, shapes %a&–%c& are as
close to a circle as possible with the given grid resolution, with
radius: %a& a=2.5"De, %b& a=1.25"De, and %c& a=0.625"De. Shape
%d& is an elongated grain with eccentricity #='3 /2, with the major
axis a=1.25"De.

FIG. 2. Averaged ion velocity around an insulating %a& and con-
ducting %b& dust grain with a shape given by Fig. 1%b&. The arrows
show the average ion velocity per simulation cell %averaged over
1.5 ion plasma periods %i&. The electron to ion temperature ratio is
!=40, and ion drift velocity vd=1.5 in units of Cs. The ion density
has a spatial variation, which gives ! · %niui&=0, consistent with the
continuity equation for stationary conditions.
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•  Mapping should be: 
–  Smooth (at least continuous and differentiable) 
– Orthogonal (preferable but not necessary) 
– Well-adapted to the physical system 



Differen2al	  Geometry	  Review	  

•  Jacobian and its inverse: 

•  Metric Tensors: 

•  Can easily convert between covariant and contravariant in 2d: 

jαβ(�ξ ) ≡
∂xα

∂ξβ
kαβ(�x ) ≡ ∂ξα

∂xβ
jαβk

βγ ≡ δγα

gαβ(�ξ ) ≡ jT j =
∂xγ

∂ξα
∂xγ

∂ξβ

gαβ(�x ) ≡ kkT =
∂ξα

∂xγ

∂ξβ

∂xγ

gαβ = (−1)α+β g3−α,3−β

gcov

gαβ = (−1)α+β gcov g
3−α,3−β



Ellip2c	  Grid	  Genera2on	  

•  Techniques using systems of PDE’s to derive coordinate 
transforms are very popular for structured grid generation 
–  Elliptic, parabolic, hyperbolic, etc   

•  Advantages: 
–  Extremum principle 
–  Smoothness of solution 
–  ‘one-to-one’ mapping 

•  Disadvantages: 
–  System of PDE’s must be solved numerically (nonlinear solver) 



Winslow’s	  Method	  (JCP	  1967)	  

•  Uncoupled Laplace equation 

•  Transform to logical grid 

•  Invert metric tensor 

System of two nonlinear coupled equations –  
Requires Newton-Krylov solver 

∇2
xξ

α =
∂

∂xβ

∂ξα

∂xβ
= 0

gαγ(�x )
∂2xµ

∂ξαξγ
= 0

g22 xξξ − 2g12 xξη + g11 xηη = 0

g22 yξξ − 2g12 yξη + g11 yηη = 0



Example	  Grids	  
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Example	  Grids	  
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Example	  Grids	  
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Curvilinear	  Coordinate	  Poisson	  Solver	  

•  Transform                       to logical grid: 

•                   is a ‘geometry factor’ 
–  Selects azimuthal or axial symmetry 

•  Variational approach to discretization of Poisson equation 
–  Symmetric 
–  Positive definite 

•  Solvability condition:   
–  Solved using Jacobi-preconditioned CG 

Physical potential is now mapped onto the logical grid 

∂

∂ξα

�
fJgαβ

∂Φ

∂ξβ

�
= −fJρ(x) = fρ(ξ)

∇2
xΦ = ρ(x)

f = (1, r)

�
ρd V = 0



Grids	  for	  Valida2on	  
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€ 

εg <
1
2π



Macropar2cle	  Equa2ons	  of	  Mo2on	  

•  On physical grid, particles obey Newton-Lorentz eqns: 

•  No existing standard for PIC with nonuniform gridding 
•  Require iterative cell-search algorithm for physical space 

mover 
•  Logical choice:  Can transform NL eqns directly to logical 

space…BUT… 

Transformed NL eqns do not conserve phase-space area 

M
d�v

dt
= �F = Q �E

d�x

dt
= �v



Hamiltonian-‐Based	  Approach	  

•  Apply contact transformation using an                 generating 
function: 

•  Assume time-independent grid 
–  Specialize to contact transformation 

F2(�x, �P , t)

pα =
∂F2

∂xα

ξα =
∂F2

∂Pα

K(�ξ, �P , t) = H

�
�x(�ξ, �P , t), �p(�ξ, �P )

�
+

∂F2

∂t

K =
1

2M

�
gαβPαP β

�
+ V (�ξ )

�ξ = �ξ(�x )



Hamiltonian-‐Based	  Approach	  

•  Apply contact transformation using an                 generating 
function: 

•  Assume time-independent grid 
–  Specialize to contact transformation 

F2(�x, �P , t)

pα =
∂F2

∂xα

ξα =
∂F2

∂Pα

K(�ξ, �P , t) = H

�
�x(�ξ, �P , t), �p(�ξ, �P )

�
+

∂F2

∂t

K =
1

2M

�
gαβPαP β

�
+ V (�ξ )

�ξ = �ξ(�x )

= T (�ξ, �P ) + V (�ξ )

Non-separable!!! 

Cannot use ‘naïve’ Leapfrog integration method 



Equa2ons	  of	  Mo2on	  

•  Apply Hamilton’s eqns: 

•  Resulting equations of motion: 

Field and grid quantities must be interpolated 

ξ̇α =
∂K

∂Pα
Ṗα = − ∂K

∂ξα

ξ̇ =
1

M

�
g11Pξ + g12Pη

�

η̇ =
1

M

�
g12Pξ + g22Pη

�

Ṗξ = − 1

2M

�
P 2
ξ
∂g11

∂ξ
+ 2PξPη

∂g12

∂ξ
+ P 2

η
∂g22

∂ξ

�
− ∂V (�ξ )

∂ξ

Ṗη = − 1

2M

�
P 2
ξ
∂g11

∂η
+ 2PξPη

∂g12

∂η
+ P 2

η
∂g22

∂η

�
− ∂V (�ξ )

∂η



Modified	  Leapfrog	  Integrator	  

•  Rewrite equations of motion as: 
                                         and 
     where 

•  ML can be written                            , where  

     Combining,  

�̇ξ = �U �̇P = �V

∂Uα

∂ξα
+

∂V α

∂Pα
= 0

�ξ� = �ξ +∆t �U(�ξ�, �P ), �P � = �P +∆t �V (�ξ�, �P )

�M∆t = �P e
∆t ◦ �ξi∆t

ξi∆t :

�
�ξ1 = �ξ +∆t�U(�ξ1, �P )

�P1 = �P
, P e

∆t :

�
�ξ� = �ξ1

�P � = �P1 +∆t�V (�ξ1, �P1)



Modified	  Leapfrog	  Features	  

•  Can be symmetrized for 2nd-order accuracy in Δt 

•  Semi-implicit     Newton/Picard iterations required for 

•  Proven symplectic for N degrees of freedom 

•  Charge accumulation/field solve once per timestep 
–  CN and Newmark-type methods require charge accumulation/field 

solve for every implicit iteration for every particle to retain accuracy! 

�ξe∆t/2 ◦ �P i
∆t/2 ◦ �P e

∆t/2 ◦ �ξi∆t/2

→ �ξ i, �P i



Logical	  Grid	  Weigh2ng/Interpola2on	  

•  Particle shape is uniform and symmetric on logical grid 
•  Utilizes adjoint operations 

–  Weighting: 

–  Interpolation: 

•  Define                             and 

•  Implemented schemes: 
–  Bilinear (S1) 

•  4 node stencil 

–  Biquadratic (S2) 
•  9 node stencil 

ρ(ξi) =
�

p

QpS(xi − xp)

E(xp) =
�

i

EiS(xp − xi)

Spi ≡ S(xp − xi) → Spi = ST
ipSip ≡ S(xi − xp)



Self	  Forces	  

•  Equations of motion require  
–  Ideally:  Interpolate  
–  Reality:  This DOES NOT produce zero self-fields at particle! 

•  Our method: 
–  Interpolate  
–  Interpolate 
–  Multiply  

•  This method works exactly in 1d, but does not exactly cancel 
self-forces in 2d. 

Eξ(ξp)

Eξ

Ex

J
→ Eξ(ξp) = Ex(ξp)J(ξp)



Grid-‐free	  ML	  Test	  
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Sample	  Data	  
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Cold plasma oscillations on a square domain 

Initial Conditions:  Quadratic (S2) particle shape functions with 
      Nξ = Nη = 128, <Nppc> = 225, Δt = 0.025, 
      and εgrid = 0.1. 



Sample	  Data	  

Two-stream instability on a square domain 

Initial Conditions:  Quadratic (S2) particle shape functions with 
      Nξ = Nη = 128, <Nppc> = 225, Δt = 0.025, 
      εgrid = 0.1, and v = [0.314, 0.314]. 
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Sample	  Data	  

Two-stream instability on a square domain 
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Sample	  Data	  

Langmuir waves on a square domain 

Initial Conditions:  Quadratic (S2) particle shape functions with 
      Nξ = Nη = 128, <Nppc> = 225, Δt = 0.01,                       
      εgrid = 0.15 
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vth ωPIC	
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 % error 
0 1.00081 1 0.081 

0.005 1.00081 1.00148 0.067 
0.01 1.00644 1.0059 0.053 
0.015 1.0166 1.01324 0.332 
0.02 1.02601 1.02341 0.254 
0.025 1.02887 1.03635 0.722 



Sample	  Data	  

Landau damping on a square domain 

Initial Conditions:  Quadratic (S2) particle shape functions with 
      Nξ = Nη = 128, <Nppc> = 400, Δt = 0.025,                       
      εgrid = 0.15, vth = 0.07 

vth γPIC	
 γtheory	
 % error 
0.06 -0.0732 -0.0774 5.426 
0.08 -0.1453 -0.1521 4.471 
0.10 -0.1504 -0.1589 5.349 
0.12 -0.1311 -0.1354 3.176 
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Sample	  Data	  

Cold plasma oscillations on an annulus 

Initial Conditions:  Quadratic (S2) particle shape functions with 
      Nξ = Nη = 64, <Nppc> = 400, Δt = 0.05, r2/r1 = 4                            
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Sample	  Data	  

Cold ES plasma oscillation on annulus 

ωpet	  =	  1.6	   ωpet	  =	  2.8	  

ωpet	  =	  3.6	   ωpet	  =	  4.8	  



Conclusions	  

•  ACC-PIC method was developed to operate entirely on logical 
domain 
–  Winslow’s method of grid generation 
–  Curvilinear coordinate formulation of Poisson equation 
–  Logical grid equations of motion 
–  Modified Leapfrog integrator 
–  Weighting/Interpolation issues 

•  Implemented in 1d and 2d 

•  Future work: 
–  Add time dependent grid 
–  Add particle management strategy 
–  Extend to 3d 
–  Include full EM physics 


