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Large Plasma Device (LAPD) is a linear plasma 
experiment at UCLA


5 

Characteristic parameters of LAPD


Cathode

Anode

!z

r

V4

V2

V3

V1

Ne Te Ti 

2.5e12 cm-3
 5 eV
 <1 eV


L|| a B 

17 m
 ~0.3 m
 ~0.1 T
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Collisions with neutrals He0 may be important

nN~ 5x1010 - 5x1011 cm-3 

νin/ωci~ 2x10-4 - 2x10-3   
Lcx,Liz ~ 10-100 m 

LAPD plasma lies well within domain of validity of 
collisional fluid plasma model 
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k⊥ρi
 λei/L||
 ω/νei


DIII-D
 1.0
 1.0
 1.0

C-Mod
 0.1
 0.1
 0.1

NSTX
 1.0
 0.1
 0.1

LAPD
 0.1
 0.01
 0.01


LAPD can be used as a test-bed for collisional plasma models validation


Compare with tokamak edge plasmas

fci 380 kHz 

ρi 0.2 cm 

νei 7.4e6 1/s 

λei 10 cm 

ω* 4e4 rad/s 

Parameters in LAPD


Singly-ionized He+


A=4, Z=1
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BOUT (BOUndary Turbulence) was originally developed at 
LLNL in late 1990s for modeling tokamak edge turbulence*


7 

  Time integration of dynamic equations for collisional 
plasma fluid (Braginskii)


  Spatial discretization on 3D mesh in real geometry 


  Time integration by implicit ODE solver PVODE


  Parallel implementation with MPI


  BOUT++ is a newer improved version#


  Results reported here produced with older BOUT;  
now using BOUT++ for LAPD⌘


*X.Q. Xu and R.H. Cohen, Contrib. Plasma Phys. 38, 158 (1998)

# Dudson, Umansky, Xu et al., Comp. Phys. Comm. 180, 1467 (2009)

⌘B. Friedman et al., APS DPP 2010 poster TP9.00014


!

Field following grid 
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For LAPD calculations 3-field fluid model for cylindrical 
geometry is implemented in BOUT
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Model assumptions

B=Bz=const

Te=const

Ti=0

k⊥ρi<<1

λei/L||<<1

ω/νei<<1


Electrostatic Model


Conservation of

  plasma density 

  momentum

  electric charge


Equations implemented in the code
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Geometry, plasma profiles, and boundary conditions 
are set up to match LAPD
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Geometry is cylindrical annulus 

Ni0 (r) is fitted to experimental profile

Te=5 eV =const

Ti=0
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Linear general dispersion relation has three instability 
branches – drift, interchange, Kelvin-Helmholtz
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• Linearize and assume the form


• Obtain an eigenvalue problem


• One branch is resistive 

drift wave (DW)


• Due to φ0 there are also other 

branches: 


• Rotational Interchange (IC)

• Kelvin-Helmholtz (KH)


• Detailed BOUT verification has been 

done on this linear dispersion relation 


KH mode in LAPD: BOUT (dots) vs. analytic


Linear verification example
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For LAPD parameters all three modes have comparable 
growth rates at similar azimuthal numbers ~10 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Equilibrium profiles
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Time-integration of equations results in  
linear growth and saturated turbulence
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Density profile control is realized either by 
suppressing m=0, or by using a source term 
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Without control, Ni(r) profile drifts

away from the target Ni0(r) 


With S(r) term, Ni(r) oscillates

around the target Ni0(r) 


• First suppress m=0 component, then calculate Γ and S(r)=div(Γ)

• Now run using S(r) and keeping m=0 

• Both profile control methods produce similar results

• More “physical” source model can be constructed using ionization,

and including parallel flow and end-plate boundary conditions
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Turbulence leads to self-generated zonal flow
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Density perturbations

  m=0 suppressed

  <N(r)>=N0(r) fixed   


Potential perturbations

 m=0 not constrained =>

 allows for zonal flow
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Using ion viscosity for Ti=0.1 eV 

yields close agreement for f<10 kHz


Temporal spectra display qualitative and  
semi-quantitative similarity to LAPD data 
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Power spectrum for several

values of νin and µii 


• High-frequency part shows 

exponential decay like in LAPD


• Neutrals are important: 

    too little => coherent features

not seen in LAPD

    too much => turbulence is 
damped

    using experimental nN range 
seems to  work best


• Ion viscosity is taken at Ti=0.1 eV

 Ti is not well known, < 1 eV

 At Ti ~0.1 eV, ωci~νii

ions may be not magnetized 
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Spatial correlation length is 2-3 times  
larger than in LAPD data
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Experiment 

Lcorr~2.5 cm  

Simulation 

Lcorr~5-7 cm 

Cross-section Z=const


The system has large range of spatial 
scales: from ρi~0.1 cm to a~10 cm; 
simulation agrees with LAPD data by 
order of magnitude
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Calculated fluctuations amplitude is within factor ~2 from 
LAPD data, qualitatively in reasonable agreement
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PDF of δn/n is in semi-quantitative

agreement with experimental data
Spatial distribution of RMS amplitude


 Synthetic diagnostics are used
  If neutral density is taken too low => 

PDF shape becomes different from expt.
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Radial profile of δn/n PDF skewness bears similarity to 
tokamak edge data
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From J.A. Boedo et al.,

Phys. Plasmas, Vol. 10, No. 5, p. 1670, 2003 


In tokamak edge the skewness grows

radially from negative to positive, ~1


In LAPD data and BOUT results 

the skewness grows radially
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Effective plasma source inferred from calculated radial 
particle flux is consistent with data
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Effective source S=divΓturb

consistent with LAPD data


Turbulent particle flux

follows density gradient


J.E. Maggs, T.A. Carter, and R.J. Taylor, Phys. Plasmas, 14, 052507 (2007).  

For non-rotating LAPD plasmas, particle transport was 

previously found to be consistent with Bohm 
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BOUT indicates δ<φ> ~ 1-3 V 


In experiment Er is probably set 

by combination of turbulence 

effects and boundary conditions


Calculated electric field <Er> evolution is consistent 
with azimuthal momentum balance


24 

Reynolds 
stress dEr/dt 
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Spectrum in azimuthal wavenumber kθ indicates 
presence of direct and inverse cascades
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Spectrum in azimuthal wavenumber kθ indicates 
presence of direct and inverse cascades
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   with breakpoint in turbulence
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Turbulence spectrum in axial wavenumber k|| indicates 
cascade to higher k|| and coupling to low k|| 
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• Asymptotic scaling vs. k||: |nk|2 ~ 1/k4


• Linear drift instability peaks at nz=1


• However nz=0 mode strongly dominates in saturated turbulence


• Drift instability =>Reynolds stress=>Er=>KH instability?
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Sequence of events shows that nz=1 mode emerges 
first, it apparently drives nz=0 mode
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|nk|2 vs. kr, kθ                

                               nz=0:                                                                            nz=1
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Sequence of events shows that nz=1 mode emerges 
first, it apparently drives nz=0 mode
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|nk|2 vs. kr, kθ                

                               nz=0:                                                                            nz=1
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Sequence of events shows that nz=1 mode emerges 
first, it apparently drives nz=0 mode
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t1:  nz=0 & 
nz=1 

t2:  nz=0 & 
nz=1 

t3:  nz=0 & 
nz=1 

t4:  nz=0 & 
nz=1 

Plotted 

|nk|2 vs. m 
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Bicoherence analysis indicates coupling of two drift 
modes (nz=±1,m=±25) and a flute-like mode (nz=0,m~0) 
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For three Fourier modes  

that satisfy sum rules


bispectrum is defined as 

ensemble average


bicoherence is defined as


Bicoherence is a measure of 

strength of coupling between 

considered modes 


ω
2 
(1

/s
)


Considering three modes (nz,mθ)


 W1=(1,25), W2=(-1,-24), W3=(0,1)
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For three Fourier modes  

that satisfy sum rules


bispectrum is defined as 

ensemble average


bicoherence is defined as


Bicoherence is a measure of 

strength of coupling between 

considered modes 


ω
2 
(1

/s
)


Considering three modes (nz,mθ)


 W1=(1,25), W2=(-1,-24), W3=(0,1)


Strong peak near ω* 

9/9/11 Umansky et al., ICNSP '2011 

Bicoherence analysis indicates coupling of two drift 
modes (nz=±1,m=±25) and a flute-like mode (nz=0,m~0) 



Statistical properties of turbulent fluctuations indicate 
non-Gaussian behavior


!/(Ni0 Cs)

Skewness  6.3

Kurtosis   92.3

Skewness  0.6

Kurtosis    2.9

Skewness  0.8

Kurtosis     4.8

"N/N0

e # /Te0
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• PDFs of turbulent fluctuations of Γ, N, φ 
all are strongly asymmetric


• Usual statistics – skewness, kurtosis 

indicate non-Gaussian fluctuations


• In tokamak edge plasma this is often 
interpreted as non-diffusive transport

by density “blobs”


• For LAPD there is no curvature drive that

causes blob polarization and transport


• In spite of non-Gaussian features, transport 
appears consistent with Bohm diffusion


• Do density blobs play a role here?
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There is evidence of electric polarization of some  
(but not all) density blobs
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This blob appears polarized This blob appears non-polarized 

Fill-plot for N, line-plot for phi 

X B
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Polarization of density blobs by centrifugal force is not 
significant; can be increased by adding radial force 
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Initially, linear drive comes from finite drift modes n||=1 
but most fluctuations end up in flute-like mode n||=0 
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• Mode with n||=1 comes first


• Growth rate for all modes γ∼ω*


• Initially n||=0 mode tracks n||=1


• Later γ0∼2γ1  - driven mode? 


• Eventually amplitudes are

ordered by n||
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In saturated turbulence, both fluctuations and zonal 
flow are mostly in flute-like mode n||=0 

9/9/11 39 

n||=0
 n||=1


ni(ρ,θ)


φ(ρ,θ)
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Radial particle transport, as well, is mostly caused by  
flute-like mode n||=0  
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• Turbulence flux by ExB advection


• Can be represented by sum of 

spectral components


• Gaps on the plot indicate negative 

values
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Flute-like density filaments are spontaneously 
generated in turbulence 
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Linear phase
 Non-linear phase


• Without perpendicular polarization mechanism (e.g. curvature, 
centrifugal force) => diffusive transport on the order of Bohm


• With perpendicular polarization mechanism => radial advection can 
become important


• Three-wave coupling here is a mechanism of blob generation! 
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Summary and conclusions


•  Turbulence calculations with 3D reduced collisional fluid plasma 
model demonstrate qualitative and semi-quantitative similarity to 
LAPD data - temporal spectra, spatial correlation length, fluctuation 
amplitude, level of particle flux


•  Calculated turbulence has non-Gaussian features; however particle 
flux appears to be close to Bohm diffusion - consistent with 
experimental data


•  Turbulence k-spectra exhibit direct and inverse cascades in both 
azimuthal and axial wave-numbers


•  Flute-like mode dominates fluctuations, zonal flow, transport

•  Coupling between drift-wave and KH modes is a mechanism of density 

blobs generation

•  Work in progress on extending the model (adding Te, VIIi,  sheath, E&M 

terms) to improve further the agreement with LAPD data
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