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Gyrokinetic Field Theory

• original GK Poisson equation in terms of representations (Lee 1983)

• gyrokinetics becomes Lie transform theory (Littlejohn & Cary 1980-3)
◦ potential obtained via “pull-back” transform

(Dubin 1983, Hahm 1988-96, Brizard 1989-95)

• gyrokinetics becomes field theory (Sugama 2000, Brizard 2000)
◦ both motion and potential obtained via Euler-Lagrange equations
◦ Noether theorem gives conserved energy

• field theory and pull-back methods identical (Brizard & Hahm 2007)

• Lie transform and Poisson bracket transform methods also identical (Brizard 2004)

underlying symmetry: mathematical operations in
Euler-Lagrange equations, Lie transform, Poisson bracket transform

are all the same

• GK field theory guarantees energy/momentum conservation (Scott & Smirnov 2010)
◦ vector→scalar conservation under low-frequency reduction (Brizard 2011)



Meaning of Energetic Consistency

• as in, eg, Landau-Lifshitz (Classical Theory of Fields)
◦ quasineutrality: neglect E2/8π (small versus ExB energy if v2A # c2)
◦ low-frequency: keep only shear-Alfvén disturbances (A‖)

• full system Lagrangian involves both particle coords and field potential
◦ particle coords move according to their Euler-Lagrange eqs
◦ field potentials given according to their Euler-Lagrange eqs

• gyrokinetic equation built according to Liouville theorem

• any version is consistent as long as approximations are taken solely in the Lagrangian
◦ gyrokinetic theory: low-frequency gauge transform, not “orbit averaging”

symmetry between field terms in L and the E-L eqs for fields
automatic conservation of energy and (tokamaks) toroidal momentum



FEFI Model

• longwave limit, keep full nonlinearity in Hamiltonian, polarisation
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• Gyrokinetic equation (with collisions)
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FEFI4 Model for Gyrokinetic Equilibrium

• total-f FEFI model, axisymmetric version
◦ longwave limits, fully nonlinear Hamiltonian, polarisation
◦ reference: B Scott et al, Contrib Plasma Phys 2010

• scenario: pedestal “equilibrium” (steady state)
◦ longer than oscillation scales, shorter than transport

• nominal parameters

n0 = 3× 1019 m−3 T0 = 200 eV B0 = 2.5T a/R = 0.5/1.65m

• nominal profiles

q = 4 r2a R/LT = 15 + 75 sech2
ra − 0.95

0.02
η = Ln/LT = 3

• time scale with c2s = T0/MD and furthermore always use me/MD = 1/3670

a/cs = 5.1µsec csτA/a = 1.0 csτG/a = 21 csτS/a = 73



Grid
• 4-D distribution function f = f(x, y, z, w) with 2-D potentials φ, A‖(x, y)

• all grids equidistant in actual coordinates (x, y, z, w)

Spatial Grid

• conformal coordinates in poloidal plane (xc, yc) with ra = expxc

• radial grid 128 pts in xc over 0.71 < ra < 0.99

• poloidal (parallel) grid 64 pts in yc on [−π,π]

• on the graphs, yc is labelled s

• on some of the graphs, x = (ra − 0.85)/ρs with ρs eval at Te/B = T0/B0

Velocity Grid (for each species, v20 = T0/m0)

• parallel canonical momentum basis, 32 pts, inhomogeneous spacing pz = m0v0×sinh z

• magnetic moment basis, 16 pts, inhomogeneous spacing µ = (T0/B0)× sinh2 w/2



Numerics

Geometry

• conformal coordinate system (xc, yc) with volume element
√
g = R/gxx

◦ property gxxgyy = 1 is exact (in a cylinder xc → log r and yc → θ)

• drift tensor F = (BR/I0)F0 with ∇ · F0 = 0 so that B∗
‖ = B since B ·∇· F = 0

• note that the flux surfaces (const-A‖) move off of the const-ra lines

• requirement ∇ · (cF/eB) + ∂B∗/∂pz = 0 satisfied exactly by bracket formulation

Scheme

• 4th-order Arakawa for all bracket pieces, RK4/Karniadakis3 for time step

Initial State

• Maxwellians with nominal profiles, ramped from flat to gradient over 0 < cst/a < 20



Bracket Structures

• collisionless part of the GK eqn is a single bracket
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• double/triple brackets
[H, f ]ab = H,a f,b − f,a H,b

[H, f,G]abc = [H, f ]ab G,c + [H, f ]bc G,a + [H, f ]ca G,b

• methods: Arakawa (JCP 1966), implemented: Naulin/Nielsen (SIAM JNA 2003)

• methods: Morinishi (JCP 1998), implemented: Idomura (JCP 2007)

• as used here: Scott/Kendl/Ribeiro (Contrib Plasma Phys 2010)



Time Step

• RK4 was used in the axisymmetric work

• better scheme for waves: Karniadakis (JCP 1991)
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• coefficients for order 3:

α1,2,3 = 3 − 3/2 1/3 β1,2,3 = 3 − 3 1

• solve for f0 with fj and Sj known for j > 0

• implemented:
◦ Hasegawa-Wakatani equations: Naulin/Nielsen (SIAM JNA 2003)
◦ gyrofluid GEM: Scott (Phys Plasmas 10/2005)



Energetic Quantities

• electron and ion contributions to ExB energy
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• electron and ion contributions to thermal energy
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• totals

EE = Ep + EP EB = Ej + EJ ET = EE + EB + En + EN



Other Conserved Quantities

• conserved densities
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evolution of conserved quantities

FEFI 4D collisionless, Edge Base Case, 0.57 < ra < 0.99 0.1 < TkeV < 2



zonal profiles

FEFI 4D collisionless, Edge Base Case, 0.57 < ra < 0.99 0.1 < TkeV < 2



zonal profiles, force balance

FEFI 4D collisionless, Edge Base Case, 0.57 < ra < 0.99 0.1 < TkeV < 2



spatial morphology

FEFI 4D collisionless, Edge Base Case, 0.57 < ra < 0.99 0.1 < TkeV < 2



parallel flows and heat fluxes

FEFI 4D collisionless, Edge Base Case, 0.57 < ra < 0.99 0.1 < TkeV < 2



temperatures and anisotropy

FEFI 4D collisionless, Edge Base Case, 0.57 < ra < 0.99 0.1 < TkeV < 2



parallel phase space

FEFI 4D collisionless, Edge Base Case, 0.57 < ra < 0.99 0.1 < TkeV < 2



velocity space

FEFI 4D collisionless, Edge Base Case, 0.57 < ra < 0.99 0.1 < TkeV < 2



Neoclassical Control Case

• neoclassical transport theory: no transport if no collisions

• effective “floor” in collisionality given by resolution
◦ more resolution → less numerical dissipation for stability

• measure evolution of R |∇ log Ti| in pedestal region

• initial transient arises from “finite-banana” effects
◦ radial excursion of ions due to magnetic (curv, grad-B) drift motion

• test to see if measured gradient ceases to evolve

important control case for computation of neoclassical transport

• this is the reason for the effort on collisionless cases



Ion Temperature relaxation, parallel space resolution

earlier case 0.85 < ra < 0.99, similar parameters/profiles, “nominal” is Ns = 32



Ion Temperature convergence, two schemes

earlier case 0.85 < ra < 0.99, similar parameters/profiles, “nominal” is Ns = 32



Collision Operator used in FEFI

• Brizard’s (2004) isotropic field particles model

• like-like (parallel velocity scattering “models” energy scattering)
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• coefficients are 1.87997 times the Braginskii collision frequency for each species



zonal profiles, collisional case

FEFI 4D collisional, Edge Base Case, 0.85 < ra < 0.99 0.1 < TkeV < 1



spatial morphology, collisional case

FEFI 4D collisional, Edge Base Case, 0.85 < ra < 0.99 0.1 < TkeV < 1



conserved momentum and collisions

FEFI 4D collisional, Edge Base Case, 0.85 < ra < 0.99 0.1 < TkeV < 1



collisions and zonal current

FEFI 4D collisional, Edge Base Case, 0.85 < ra < 0.99 0.1 < TkeV < 1

• satisfies control case: no bootstrap current without collisions

• adds weight to the reality of the bootstrap current result



Edge Equilibrium Flows with FEFI

• flows: close to static radial force balance nee∇rφ+∇rpi ≈ 0
◦ MHD: Alfvén oscillations occur unless profiles slowly ramped into form

• effect of collisions: bootstrap current
◦ control case: without collisions, no bootstrap current

• Main Point: total-f gyrokinetics can recover neoclassical results
◦ demonstrated energy/momentum conservation is essential in establishing them

B Scott/A Kendl/T Ribeiro, Contrib Plasma Phys 50 (2010) 228
Nonlinear Dynamics in the Tokamak Edge

B Scott/J Smirnov, Phys Plasmas 17 (2010) 112302
Energetic Consistency and Momentum Conservation in the

Gyrokinetic Description of Tokamak Plasmas



Progress on 5-D FEFI

• FEFI (full electrons, full ions) is a global total-f electromagnetic Vlasov model

• just started, showed in 2008 turbulence plus MHD equilibrium is feasible
◦ at least for thin-strip edge cases (small Shafranov shift despite strong J‖)

• AUG case (2ρs × 2ρs) on 64× 512× 32 grid
◦ same parameters as the FEFI4 case, but no pedestal

• spectra are similar to gyrofluid cases, with
◦ enhancement of mesoscale MHD range due to trapped electrons
◦ same effect of that as seen in fluxtube delta-f gyrokinetic cases

• same shift of the density to top/inside seen as in gyrofluid cases



amplitude and flux spectra

FEFI nominal case: T0 = 200 eV, n0 = 3× 1013 cm−3, B0 = 2.5T

• reflects mesoscale MHD: everything peaks together at large scale



poloidal plane morphology

• strong shift off the
flux surface

• radial domain
stretch ×3

• filaments visible
on outboard side



goal for 5-D total-f computation

• Lagrangian of same form with FLR and finite-flow corrections in H
(Miyato/Scott JPSJ 2009)
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Nonlinear Nature of the Problem

• short and long wavelengths work together
◦ cascades go both ways, each side is coupled φ ↔ J‖ ↔ pe
◦ turbulence scaling does not follow linear growth rates
◦ contact to MHD by microturbulence — self consistent gradient drive

• for MHD instability cases, energetic contact to ion gyroradius scales
◦ saturation occurs via its own self-generated turbulence
◦ microturbulence shorts out MHD self-nonlinearity

• “equilibrium” itself is dynamical
◦ relaxation to perturbation is slower than turbulence saturation
◦ bursty character follows . . . consequences for simulation:

“equilibrium” must work in a time-dependent, electromagnetic model
kinetic: need to capture O(1) rho-banana physics

electromagnetic: all significant responses are electromagnetic



basics of momentum conservation

• Noether theorem: canonical momentum conservation law
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• last term gives wave-wave transport, others give plasma momentum
◦ here, P = −∂L/∂∇φ is the polarisation vector



basics of energy conservation

• Noether theorem: energy conservation law
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• global conservation: use field equations to eliminate ∂H/∂t
◦ same operation as varying field potentials to get their E-L eqs

• this yields field energy term, shear Alfvén disturbances B⊥
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• local conservation/transport eqn is more involved, not shown here

• reference: B Scott & J Smirnov, Phys Plasmas 17 (2010) 112302


