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Gyrokinetic Field Theory

original GK Poisson equation in terms of representations (Lee 1983)

gyrokinetics becomes Lie transform theory (Littlejohn & Cary 1980-3)
o potential obtained via “pull-back” transform
(Dubin 1983, Hahm 1988-96, Brizard 1989-95)

gyrokinetics becomes field theory (Sugama 2000, Brizard 2000)
o both motion and potential obtained via Euler-Lagrange equations
o Noether theorem gives conserved energy

field theory and pull-back methods identical (Brizard & Hahm 2007)

Lie transform and Poisson bracket transform methods also identical (Brizard 2004)

underlying symmetry: mathematical operations in
Fuler-Lagrange equations, Lie transform, Poisson bracket transform
are all the same

GK field theory guarantees energy /momentum conservation (Scott & Smirnov 2010)
o vector—scalar conservation under low-frequency reduction (Brizard 2011)



Meaning of Energetic Consistency

as in, eg, Landau-Lifshitz (Classical Theory of Fields)
o quasineutrality: neglect E?/8m (small versus ExB energy if v4 < ¢?)
o low-frequency: keep only shear-Alfvén disturbances (A))

full system Lagrangian involves both particle coords and field potential
o particle coords move according to their Euler-Lagrange eqs
o field potentials given according to their Euler-Lagrange eqs

gyrokinetic equation built according to Liouville theorem

any version is consistent as long as approximations are taken solely in the Lagrangian
o gyrokinetic theory: low-frequency gauge transform, not “orbit averaging”

symmetry between field terms in L and the E-L eqs for fields
automatic conservation of energy and (tokamaks) toroidal momentum




FEFI Model

e longwave limit, keep full nonlinearity in Hamiltonian, polarisation
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e Gyrokinetic equation (with collisions)
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e Polarisation/Induction equations (Euler-Lagrange equations for potentials)
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FEFI4 Model for Gyrokinetic Equilibrium

total-f FEFI model, axisymmetric version
o longwave limits, fully nonlinear Hamiltonian, polarisation
o reference: B Scott et al, Contrib Plasma Phys 2010

scenario: pedestal “equilibrium” (steady state)
o longer than oscillation scales, shorter than transport

nominal parameters

ng=3x10"m™> Ty =200eV  By=25T a/R=0.5/1.65m

nominal profiles
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time scale with ¢ = Ty/Mp and furthermore always use m./Mp = 1/3670

a/cs = 5.1 usec csTa/a = 1.0 csTa/a =21 csTs/a =173



Grid

4-D distribution function f = f(x,y, 2, w) with 2-D potentials ¢, A (z,y)

all grids equidistant in actual coordinates (x,y, z, w)

Spatial Grid

conformal coordinates in poloidal plane (x.,y.) with r, = exp x,

radial grid 128 pts in x. over 0.71 < r, < 0.99

poloidal (parallel) grid 64 pts in y. on |—m, 7|

on the graphs, vy, is labelled s

on some of the graphs, x = (r, — 0.85)/ps with ps eval at T./B = Ty/ By

Velocity Grid (for each species, vi = Ty /mq)

parallel canonical momentum basis, 32 pts, inhomogeneous spacing p, = mgvg X sinh z

magnetic moment basis, 16 pts, inhomogeneous spacing 1 = (Tp/By) X sinh® w /2



Numerics

Geometry

conformal coordinate system (z.,y.) with volume element /g = R/g""
o property ¢**g,, = 1 is exact (in a cylinder x. — logr and y. — 0)

drift tensor F = (BR/1y)Fq with V - Fg = 0 so that B = Bsince B-V- F =0
note that the flux surfaces (const-A)) move off of the const-r, lines

requirement V - (cF/eB) + 0B*/0p, = 0 satisfied exactly by bracket formulation
Scheme

4th-order Arakawa for all bracket pieces, RK4/Karniadakis3 for time step
Initial State

Maxwellians with nominal profiles, ramped from flat to gradient over 0 < ¢st/a < 20



Bracket Structures

collisionless part of the GK eqn is a single bracket
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double/triple brackets
[Hv f]ab — H,a f,b — f,a H,b

[HafaG]abc — [Haf]a,bG,c_I' [Haf]ch,a + [Haf]ca G,b

methods: Arakawa (JCP 1966), implemented: Naulin/Nielsen (SIAM JNA 2003)
methods: Morinishi (JCP 1998), implemented: Idomura (JCP 2007)

as used here: Scott/Kendl/Ribeiro (Contrib Plasma Phys 2010)



Time Step

RK4 was used in the axisymmetric work

better scheme for waves: Karniadakis (JCP 1991)

of

coeflicients for order 3:

123 = 3 — 3/2 1/3 61,273 = 3

solve for fy with f; and S; known for j > 0

implemented:
o Hasegawa-Wakatani equations: Naulin/Nielsen (SIAM JNA 2003)
o gyrofluid GEM: Scott (Phys Plasmas 10/2005)
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electron and ion contributions to ExB energy

Energetic Quantities

B, = [dr (e -m. 2>fe

electron and ion contributions to magnetic energy

E; = /dA (—=U.1.) 4

electron and ion contributions to thermal energy
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Other Conserved Quantities

conserved densities
M:/Mﬁ M:/Mﬁ

conserved entropies

P / dA f.log f. S, = —T, / dA £, log f,

conserved toroidal canonical momenta

Pe:/dAfePegp Nz:/dAszzgp

these are O(1), but the total is O(10™%)

note role of ExB component to toroidal momentum (longwave MHD limit)
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where the contribution from (m./e)J) is neglected



evolution of conserved quantities
FEFI 4D collisionless, Edge Base Case, 0.57 <7, <0.99 0.1 < Tkey < 2
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zonal profiles

FEFI 4D collisionless, Edge Base Case, 0.57 < r, < 0.99
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zonal profiles, force balance

FEFI 4D collisionless, Edge Base Case, 0.57 <7, <0.99 0.1 <Tkey < 2
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spatial morphology

FEFI 4D collisionless, Edge Base Case, 0.57 <7, <0.99 0.1 <Tkey < 2

t = 76.00
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parallel flows and heat fluxes

FEFI 4D collisionless, Edge Base Case, 0.57 <7, <0.99 0.1 <Tkey < 2

t = 76.00
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temperatures and anisotropy

FEFI 4D collisionless, Edge Base Case, 0.57 <7, <0.99 0.1 <Tkey < 2
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parallel phase space

FEFI 4D collisionless, Edge Base Case, 0.57 <7, <0.99 0.1 <Tiey < 2

t = 76.00
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velocity space

FEFI 4D collisionless, Edge Base Case, 0.57 < r, < 0.99

t = 76.00
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Neoclassical Control Case

neoclassical transport theory: no transport if no collisions

effective “floor” in collisionality given by resolution
o more resolution — less numerical dissipation for stability

measure evolution of R |V logT;| in pedestal region

initial transient arises from “finite-banana” effects
o radial excursion of ions due to magnetic (curv, grad-B) drift motion

test to see if measured gradient ceases to evolve

important control case for computation of neoclassical transport

this is the reason for the effort on collisionless cases



lon Temperature relaxation, parallel space resolution

earlier case 0.85 < 7, < 0.99, similar parameters/profiles, “nominal” is Ny = 32

ion gradient R/L,,
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lon Temperature convergence, two schemes

earlier case 0.85 < 7, < 0.99, similar parameters/profiles, “nominal” is Ny = 32

ion gradient R/L,,
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Collision Operator used in FEFI

Brizard’s (2004) isotropic field particles model

like-like (parallel velocity scattering “models” energy scattering)

5 1-¢29 8
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0
Ve (Z — az) T Bz%
transformed coordinates v? = U? + 2uB C=U—,)/v

moments o, 3,,7, calculated to conserve energy and momentum

electron-ion

0 1-¢*0
Ce = et
z@: ac" v ¢
transformed coordinates v? =U? 4 2uB (=U/v

coefficients are 1.87997 times the Braginskii collision frequency for each species



zonal profiles, collisional case

FEFI 4D collisional, Edge Base Case, 0.85 <71, <0.99 0.1 <Tyev <1

profiles vorticity flows




spatial morphology, collisional case

FEFI 4D collisional, Edge Base Case, 0.85<r, <0.99 0.1 <Tyv <1

t = 480.0

p(x,s) Ay(z,s) n,(x,s) Ty(x,s) Tz, s) Ji(x,s)
T ! 7T | il | d ! d ! m |
s | N s | 1 s | 1 s | |1 s
0F - 0 - 0 - 0F — 0
—7T | —TT | —TT | —TT | —TT | —TT |

—39 439 -39 439 -39 439 -39 439 -39 439 -39 439
A = 0.399 A= 16.1 A= 0.277 A = 0.448 A = 0.326 A = 0.404



conserved momentum and collisions
FEFI 4D collisional, Edge Base Case, 0.85 <1, <0.99 0.1 <Tkey <1

canonical momentum
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collisions and zonal current

FEFI 4D collisional, Edge Base Case, 0.85 <71, <0.99 0.1 <Tyev <1

t = 320.0 t = 640.0
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e satisfies control case: no bootstrap current without collisions

e adds weight to the reality of the bootstrap current result



Edge Equilibrium Flows with FEFI

e flows: close to static radial force balance n.eV,¢ + V,p; = 0
o MHD: Alfvén oscillations occur unless profiles slowly ramped into form

e cffect of collisions: bootstrap current
o control case: without collisions, no bootstrap current

e Main Point: total-f gyrokinetics can recover neoclassical results
o demonstrated energy/momentum conservation is essential in establishing them

B Scott/A Kendl/T Ribeiro, Contrib Plasma Phys 50 (2010) 228
Nonlinear Dynamics in the Tokamak Edge

B Scott/J Smirnov, Phys Plasmas 17 (2010) 112302
Energetic Consistency and Momentum Conservation in the
Gyrokinetic Description of Tokamak Plasmas




Progress on 5-D FEFI

FEFT (full electrons, full ions) is a global total-f electromagnetic Vlasov model

just started, showed in 2008 turbulence plus MHD equilibrium is feasible
o at least for thin-strip edge cases (small Shafranov shift despite strong .J))

AUG case (2ps X 2ps) on 64 x 512 x 32 grid
o same parameters as the FEFI4 case, but no pedestal

spectra are similar to gyrofluid cases, with
o enhancement of mesoscale MHD range due to trapped electrons
o same effect of that as seen in fluxtube delta-f gyrokinetic cases

same shift of the density to top/inside seen as in gyrofluid cases



FEFI nominal case:

amplitude and flux spectra

amplitudes
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e reflects mesoscale MHD: everything peaks together at large scale



poloidal plane morphology n,(7,0)

e strong shift off the
flux surface

e radial domain
stretch x3

e filaments visible
on outboard side

(c./a)t = 60.00



goal for 5-D total-f computation

e Lagrangian of same form with FLR and finite-flow corrections in H
(Miyato/Scott JPSJ 2009)
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e magnetic field term includes the equilibrium (yields Grad-Shafranov equation)
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Nonlinear Nature of the Problem

e short and long wavelengths work together
o cascades go both ways, each side is coupled ¢ <> J)| <> pe
o turbulence scaling does not follow linear growth rates
o contact to MHD by microturbulence — self consistent gradient drive

e for MHD instability cases, energetic contact to ion gyroradius scales
o saturation occurs via its own self-generated turbulence
o microturbulence shorts out MHD self-nonlinearity

e “equilibrium” itself is dynamical
o relaxation to perturbation is slower than turbulence saturation
o bursty character follows ... consequences for simulation:

“equilibrium” must work in a time-dependent, electromagnetic model
kinetic: need to capture O(1) rho-banana physics
electromagnetic: all significant responses are electromagnetic




basics of momentum conservation

Noether theorem: canonical momentum conservation law

0 . OH
EfPSD—I_VZfP‘PZP_'_ %:O

species sum, flux surface average pieces

0 0 0
IR = o (fpR—P-VY) +

(P2 ) = aav<fszZV>+aav (ef2))

(ef)

0
oV

last terms in each line: exact “polarisation cancellation” leaving

0 0 OH
5 (fp-R—P - Vi) + Pt <fszZV> + <f%> =0

last term gives wave-wave transport, others give plasma momentum
o here, P = —0L/0V ¢ is the polarisation vector



basics of energy conservation

Noether theorem: energy conservation law

0 : OH

global conservation: use field equations to eliminate OH /0t
o same operation as varying field potentials to get their E-L eqs

this yields field energy term, shear Alfvén disturbances B |

(/dAfH /dV L):o

local conservation /transport eqn is more involved, not shown here

final result is

reference: B Scott & J Smirnov, Phys Plasmas 17 (2010) 112302



