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| Study momentum transport using gyrokinetic model

= Turbulent momentum transport, which may drive intrinsic rotation, is

one of critical issues in predicting performances of ITER, where
external momentum input is expected to be small

s Gyrokinetic simulations have been widely used in studying turbulent
momentum transport

= Quasilinear simulation of momentum pinch and residual stress
[Peeters,PRLO7, Camenen,PRLO9,NF11]

= Nonlinear Jf simulation of momentum pinch and residual stress

[Peeters,PPCFO6, Waltz,POP0O7,POP11, Holod,POP0O9,PPCF10, Casson,POPQ9,
Wang,PRLO9]

= Nonlinear full-f'simulation
= Formation of intrinsic rotation [I[domura,NFO9]
= |dentification of residual stress [Ku,IAEA10,Jolliet, NF11]
= Accuracy of toroidal momentum balance [Sarazin,|IAEA10]

= However, significant concern has been raised about the accuracy of
momentum transport in gyrokinetic model



' Controversial arguments on GK momentum transport

m Assertion raised in [Parra,Catto,POP10 and earlier works]

Fokker-Planck equation yields
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—Conventional O(¢) gyrokinetics and QN eq. can not determine U_and E

= Avoidance of this ordering issue by large flow ordering [Sugama,PPCF11]

m Demonstration of toroidal momentum conservation [Scott,POP10]

Modern gyrokinetic theory assures toroidal momentum conservation at
any order, provided that energetic consistency is satisfied

—|s there erroneous momentum flux satisfying momentum balance?

= In this work, we discuss

= Accuracy of toroidal momentum balance in GT5D

= Influences of higher order drifts on turbulent momentum flux



§ Gyrokinetic Toroidal 5D full-f Eulerian code GT5D

[ldomura, Comput.Phys.Commun. (2008); Nucl. Fusion (2009)]

= GT5D code ITG mode in JT-60SA
= Global full-f'gyrokinetic simulations of turbulent with ITER like shape

transport in ITG-TEM turbulence

= 5D Eulerian code based on non-dissipative
conservative FD scheme [Idomura,JCP07]

m Verification [Idomura,CPC08,Satake,CPC10,Camenen,NF10]

= ITG-TEM benchmark (GT3D,GKW,etc...)
= Neoclassical benchmark (FORTEC-3D)

m Validation [Idomura,NF09,IAEA10,Jolliet,IAEA10]
= Avalanche-like non-local ion heat transport
= Stiffness of ion temperature profile
= Formation of intrinsic rotation
= Scaling studies on p*, safety factor, rotation




| First principle models used in GT5D

= Hamiltonian in the gyro-centre coordinates Z;,=(#;R,v,,u, )
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= Gyrokinetic equations based on modern GK theory [Brizard,RMPO7]
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= Minimum model (15t order particle Lagrangian + 2" order field Lagrangian)
satisfying energetic consistency in GK field theory [Scott,POP10]
= Energy conservation

= Toroidal momentum conservation

= Linear Fokker-Planck collision operator [Xu,PFB91]

= Field particle operator with exact particle, momentum, and energy
conservation [Satake,PFRO8]



¥ Conservative form of gyrokinetic equation

= Conservative gyrokinetic equation
Dm’B,f om’B,f

Dt dt
= Phase space conservation (incompressible Hamiltonian flows)
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s Centered FD operator for phase space conservation [Idomura,CPCO8]
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@
I Non-dissipative conservative FD scheme

[Morinishi, J. Comput. Phys. (1998); Idomura, J. Comput. Phys. (2007)]

= Continuity equation for f transported by incompressible flows
DIf _3Jf OIvif _alf v,

Dt ot ox, ot dx,
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= Conservation of fand f? assures numerical stability
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| Advantages of non-dissipative conservative FD scheme

s Centered FD approach in ¢ keeps toroidal symmetry numerically
= Drifts implemented by FD of H can be easily extended to higher order

= Local conservation of fleads to balance relations of v, P, moments
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| Summary of numerical models in GT5D

= Gyrokinetic solverin (R,;,Z,v))
4th or 6t order NDCFD for 4D advection in (R,§,Z,v))

— parallelized in (R,Z,u) : boundary data commun. in (R,Z2)

Implicit treatment of stiff parallel advection using 2"9 order additive
semi-implicit Runge-Kutta method [Zhong,JCP98]

= Collision operator in (v,,u)

6t order centered FD for 2D advection-diffusion in (v, u)

— parallelized in (R,Z) : data transpose (R,Z,u) <> (R,Z)
= Field solver in (y,6,p)

Fourier mode expansion in @
2D FEM solverin (v ,0)

with field-aligned filter [Jolliet,JCP10]

— parallelized in (¢, u) :
data transpose (R,Z,u) < (@,
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i Strong scaling of GT5D on multi-core platforms
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Sustained Performance (GFlops/total)

100

[ldomura, Jolliet, accepted for SC’'11 conference]
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Altix(flatMPI):  ~1.75TF(14.3%)
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BG/P(flatMPI): ~0.81TF(11.7%)
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= Multi-layer hybrid parallelization based on symmetry of operators

= Scale beyond 10* cores with keeping sustained performance of >10%

= Porting on K-computer is ongoing
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I Collisionless equilibrium distribution

[ldomura et al.,, Comput.Phys.Commun. (2008)]
= Collisionless equilibrium f,(y,,&,u) tested in the axisymmetric limit
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= GT5D satisfies {f,,H,}=0 or dP /dr=0 with good accuracy
m Present version solve only {0f,H,} and {f,0H} based on this property



H Neoclassical benchmark against FORTEC-3D

[Satake,ldomura,Sugama,Watanabe, Comput.Phys.Commun. (2010)]
= Neoclassical benchmark tests against FORTEC-3D [Satake,NF05]
= Ambipolar condition in axisymmetric tokamak
s C-H formula y =K V')€" p, /T, [Chang-Hinton,PF82]
= NC force balance [Hinton-Hazeltine,RMP76, Hirshman-Sigmar,NF81]
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= QN condition can determine E, satisfying NC force balance



| Conservation of toroidal momentum

= Toroidal momentum transport equation [Scott, POP2010]
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m Toroidal momentum balance equation checked in GT5D

OF, sof 1 0 y % recover the above equation
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m A_terms are canceled by exact particle conservation

m C term disappear due to exact particle and momentum conservation
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' Accuracy of toroidal momentum conservation

m Toroidal momentum balance condition in flux-driven ITG turbulence

Cyclone case with 1/p*~150, fixed heat source without particle and momentum input
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= Momentum conservation satisfied with good accuracy

= Bipolar flow generation determined mainly by global E, shear structure
s Co-current momentum injection from no-slip plasma boundary
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l Influences of higher order drifts on turbulent fluxes

= Higher orciler gyro-center Hamiltonian [Mishchenko,POP2010]
H = cmof+puB+ e(g),

43292 (Vig-Vi) [(Vﬂb)ﬂ

s Convergence of turbulent fluxes in flux-driven ITG turbulence
Cyclone case with 1/p*~150, time average over tv,/R= 250~1200
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= Influences of higher order drifts are negligible

c.f. Intrinsic statistical error bar of gyrokinetic simulation is ~15%
[McMiillan,POPQOS, Villard,PPCF10, Jolliet,JCP10]



i Flux driven ITG turbulence simulations

= Calculation parameters (Cyclone like)
Ry/a=2.8, B,=1.9T, ¢=0.85+2.18(r/a)?, n,~5x10"m3, T~2keV
1/p*=100, 150, 225, v*=0.025~0.1
1/6 wedge torus (#=0,6,12,...)
(Nz-N&NN,,N,)=(110,24,110,80,20) ~ (230,48,230,80,20)

Initial profiles and source/sink
= Fixed heat source (7/a<0.4) P

0.15
Src_Asrc(w) sre 1(]FMI_.][M2) ~
P, = l(mp*2)S,,.dZ = 1.3~3MW s | o
with no particle/momentum input 3 =
3 S
= Sink (#/a>0.9) f;: ] 0.05
snk snk(w) snk [ﬁ) f] < 05 E = _
No slip boundary with fixed edge 7, = AW g

0 02 04 06 0.8 1
r/a

= Adaptive momentum source

Sad: aal-1 [fM(<n> ’ V//ad’ Tad)_fM(<n> ’ <V//>f9 <T>f)]
Adaptive momentum input without particle/power input
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| Plasma size scaling of ITG turbulence

[Jolliet,Idomura, IAEA2010, submitted to Nucl. Fusion]

= First size scaling study of ITG turbulence near critical L,
= worse-than-Bohm scaling with gyro-Bohm like turbulent correlations
c.f. Size scaling on DIIID L-mode plasmas [Petty,PRL95,McKee,NFO1]

s p* effects and non-local transport mechanisms
= avalanche-like heat flux due to radial propagation of blobs
= non-Gaussian features in PDF of turbulent heat flux
= p* dependence of global E, structure

Flux-driven ITG turbulence, Cyclone like parameters with 1/0*=100,150,225
1/p*=100 1/p*=150 1/p*=225

worse-than-Bohm
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I p* dependence of global E, structure

Ye<0  y>0 y~0

—1/100

= Mean E, profiles

= negative / positive / flat E, shear
regions appear at smaller p*

= correlated with parallel flow profiles
through force balance relation
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: : 7 — /100
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01" —1/225
<
>
100  0.073 -0.084 0.067  0.048 °
150 = 0.073 = -0.074 = 0.070 | 0.018 e
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= Force balance relation with V,~0 suggests y, o< p*

= In y,<0 and y;>0 regions, p* dependence of y, is weak, y,~ y;, ~ const.

= In y,~0 region, p* dependence of y, is enhanced by formation of flat
profiles at smaller p*



' Decoupling momentum transport using adaptive source

1.5,

= O™ scan with adaptive momentum source

—100,ad

= V), profiles canceled by adaptive source
c.f. [Solomon,POP10,lda,NF10,Ku,|lAEA10]

= higher transport levels than original cases

—suppression of turbulent heat transport
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= without parallel flows, E, shear follows p* scaling, y,ocp*
—Overall reduction of E, shear enhances transport levels
—Worse-than-Bohm scaling becomes weaker



iSummary

= Accuracy of momentum transport in GT5D is tested
= Collisionless equilibrium given by P,
= Neoclassical force balance relation
= Accuracy of toroidal momentum conservation
= Influences of higher order drifts on turbulent fluxes
—Test results suggest correctness of momentum transport in GT5D

—Influences of higher order polarization terms are yet to be examined

= Roles of momentum transport in ITG turbulence
= Global £, structure has significant impact on turbulent transport

= Global E, profiles are connected with intrinsic V), profiles, which seem
to be p* independent effect in force balance relation

= Simulations with adaptive momentum source suggest
—suppression of heat transport by turbulent momentum transport
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