
FSC

PIC simulations with charge-
conserving current deposition on

GPU
Chuang Ren

Department of Mechanical Engineering
Department of Physics & Astronomy

Laboratory for Laser Energetics �
University of Rochester

22nd ICNSP, 9/9/2011, Long Branch, NJ

FSC

In collaboration with

Xianglong Kong, M. C. Huang, V. K. Decyk,
and the OSIRIS consortium led by W. B. Mori

and L. O. SIlva

X. Kong, M. C. Huang, C. Ren, and V. K. Decyk, JCP 230, 1676 (2011)

FSC

1 

10 

100 

1000 

2006  2007  2008  2009  2010  2011  2012  2013  2014 

Pe
ak

 G
FL

O
P/

s 

NVIDIA GPU Intel CPU

GPU’s have ~10x computing power of CPUs�

Ti 4200�
FX 5800 �

FX 5950 Ultra �

6800 Ultra �
7800 GTX �

7900 GTX �

8800 Ultra �
GTX 280�GTX 285� GTX 480�

Pentium 4 2.4 �
Pentium 4 HT 3.2 �

Pentium 4 HT 3.4 �
Pentium 4 HT 570J �

Pentium D 840 �
Pentium D 9500 �

Core 2 Duo E6700 �

Core 2 Extreme
QX6800 �

Quad-Core
Xeon X5492 �

Core i7-975 EE �

Core i7-980X �

FSC

0 

40 

80 

120 

160 

2006� 2007� 2008� 2009� 2010� 2011� 2012� 2013� 2014�

B
an

dw
id

th
 (G

B
/S

) 

NVIDIA GPU Intel CPU

GPU’s have very high memory bandwidth �

Ti 4200�
FX 5800 �

FX 5950 Ultra �
6800 Ultra �7800 GTX �

7900 GTX �

8800 Ultra �

GTX 280�

GTX 285�

GTX 480�

Pentium 4 � Pentium D �
Core 2 Duo�

Core 2 Extreme �

Quad-Core
Xeon� Core-i7 �

FSC

Many latest generation supercomputers use GPU’s

•  Programming models such as
CUDA propel a new
generation heterogeneous
CPU-GPU cluster

• 3 out of the top 5 fastest
computer in the world use
Nvidia GPU’s.

•  GPU-accelerated clusters are
also energy-efficiency

• Exa-scale cluster: 1M GPU’s?

. .
.

. .
.

CPU �

GPU�

CPU �

GPU�

The Heterogeneous serial-
parallel programming model

FSC

. . .

. . .

CPU �

GPU�

CPU �

GPU�

Heterogeneous serial-parallel programming model

CUDA application = serial program executing parallel kernels
•  Serial code executed by a CPU thread
•  Parallel code executed by GPU, in threads (grouped in

blocks)
•  Syntax similar to C or Fortran

FSC

GPU’s employ many (>105) computation threads for any task�

Grid�

· · ·�
Block (0, 0)� Block (1, 0)� Block (M, 0)�

Block (0, N)�

· · ·�

Block (M, N)�Block (1, N)�

· · ·�

· · ·�

· · ·�

Block (0, 1)� Block (1, 1)� Block (M, 1)�

   All threads run the same command (kernel).

   A kernel is executed as a grid with multiple thread blocks

• Threads within a block

cooperate via shared

memory, atomic

operations and barrier

synchronization

• Threads from different

blocks cannot

communicate �

· · ·�

· · ·�

FSC

Grid

Global Memory

Block (0, 0)‏

Shared Memory

Thread
)0, 0(‏

Register
s

Thread
)1, 0(‏

Register
s

Block (1, 0)‏

Shared Memory

Thread
)0, 0(‏

Register
s

Thread
)1, 0(‏

Register
s

Hos
t

GPU Memory Hierarchy�

Shared Memory (48 KB/
Block)

 -Shared among threads in a
single block

 -On-chip
 -As fast as registers

Global memory (~1GB)
-Main means of
communicating R/W Data
between host and device
-Contents visible to all
threads
-Long latency access

FSC

Particle-in-Cell Method for Plasma Physics�

Weighting

(x,u)k  Jij

∂E
∂t

= 4π j − c∇ × B

∂B
∂t

= −c∇ × E

dp
dt

= q E + v
c
× B





FSC

Develop a charge-conserving PIC with CUDA

•  Bowers et al. (PoP 2008): IBM Cell processors, CC
current deposit (5.9 ns/particle-step for a cold
plasma)

•  Decyk et al. (CPC 2010): spectral code, FFT field
solver, non-CC current deposit + Poisson Eq. (3.4
ns/particle-step for a warm plasma)

•  Burau et al. (IEEE Transaction 2010): parallel, not
charge-conserving (~7-10 ns/particle-step on a
single GPU)

FSC

Divide the task into many threads (EM Field Solver)�

Ez � Ez �

Ez � Ez �

Ey Bx� Ey Bx�
Bz �

Ex By�

Ex By�

Thread(i, j) �

FSC

Use shared memory (EM Field Solver)�

Ez � Ez �

Ez � Ez �

Ey Bx� Ey Bx�
Bz �

Ex By�

Ex By�

Thread(i, j) �

E field can be read into
shared memory to
reduce memory transfer �

Used by Thread(i,
j) and Thread (i-1,

j) �

FSC

Use shared memory (Field Interpolation and Particle Push)�

Shared
Memory �Each particle is assigned

with one thread

Field data are stored in the
shared memory
 - assign a sub-domain
(cluster) to a block

Particles need to be sorted
base on their positions into
different clusters

FSC

Finding an efficient parallel sorting scheme:
Four-pass particle sorting scheme�

Two adjacent clusters are combined into a bi-cluster.

One block is assigned to sort particles in one bi-cluster.�

FSC

Sorting method: avoid writing conflict and
reduce data movement�

m: (left → right)
n: (left ← right)
eg. m=2, n=5

Swap min(m,n)
particles�

Move |m-n|
particles to
holes or buffer
slots�

Pros: highly parallel (no write conflict)
 one movement(1 read + 1write) for each sorting particle
Cons: need to maintain a hole list�

FSC

Swap-Move Sorting Scheme (Cont.) �

After the four pass sorting, the remaining holes in a
cluster is filled by the particles at the end of data region�

FSC

Charge-conserving current deposition:
data-dependent branch �

Cross
transvers

e
boundar

y �

Split in y
direction
Find PA �

Cross
vertical
boundar

y �

P0 and PA
in the

same cell �

Split in x
direction
Find PB �

Cross
vertical
boundar

y �

Deposit
Current
P0 → P1 �

Split in x
direction
Find PB �

Deposit
Current
P0 → PB
PB → P1 �

Deposit
Current
P0 → PA
PA → P1 �

Split in x
direction
Find PB �

Deposit
Current
P0 → PB
PB → PA
PA → P1 �

Deposit
Current
P0 → PA
PA → PB
PB → P1 �

Y�

N �

Y� Y�

N �

Y�

N �N �

P0 � P1 �
P0 �

PB � P1 �

P0 �

P1 �

PA �

P0 �

P1 �

PB �
PA �

P0 �

P1 �

PA �

PB �

FSC

Avoid Branching:
Current Split Scheme with Non-Diverged Form�

P0 �

P1 � PM PA PB �

PN �

P0 �

P1 �

PN �

PM �

PA PB �

P0 �

P1 �

PA PB �
PN �

PM �

P0 �

P1 �

PM PA �
PN PB �

P0 �

P1 �

PN PA �
PM PB �

H1=(x1≥x0)

xA = H1 min(xM, xN)+(1- H1) max(xM , xN)

H2=((xM-x0) (xM-x1)<0)&& ((xN-x0) (xN-x1)<0)

xB = H2 max(xM, xN)+(1- H2) max(xM , xN)

xB = H2 xB + (1- H2) xA

;

FSC

Multiple threads write/add data to the same J

grid point

 –– Write conflict occurs

 –– Atomic operations are needed (available in

the latest compute capability) �

Resolve Write Conflict Between Parallel Threads �

FSC

Use shared memory:
Assign one sub-domain (cluster) to one block �

Shared
Memory �

To avoid redundant data transfer, current

field data are stored in shared memory

→ Particles need to be sorted base on their

positions

FSC

The GPU code is benchmarked with OSIRIS �

Grid � 416×392 �
Space � 52.0×49.0 �

Time step� 0.0883ωp
-1 �

Time� 1000.0ωp
-1 �

Electrons
per Cell �

50 (25 per
specie)

Total
Electrons � 8,153,600 �

Beam
Energy � 2.5MeV �

Beam/
Plasma

Temperature
s�

100KeV, 1keV�

Electron Beam-Plasma
Instability in fast ignition (Kong
et al., Phys Plasmas 2009�

Relativistic e- beam

plasma return
current

FSC

The single-precision GPU code results agree with those from
OSIRIS (double-precision)

0�

10�

20�

30�

40�

50�

60�

0.0 � 119.2 �238.4 �357.6 �476.8 �596.0 �715.2 �834.4 �953.6 �

Time(ωp
-1) �

E1

CPU�

GPU�

0�

0.5�

1�

1.5�

2�

2.5�

3�

3.5�

4�

0.0 � 119.2 �238.4 �357.6 �476.8 �596.0 �715.2 �834.4 �953.6 �

Time(ωp
-1) �

B3

CPU�

GPU�

700�

900�

1100�

1300�

0.0 �119.2 �238.4 �357.6 �476.8 �596.0 �715.2 �834.4 �953.6 �

Time(ωp
-1) �

Beam �

CPU�

GPU�

1275.0 �

1275.5 �

1276.0 �

1276.5 �

0.0 �119.2 �238.4 �357.6 �476.8 �596.0 �715.2 �834.4 �953.6 �
Time(ωp

-1) �

Energy Conservation �

CPU�

GPU�

FSC

CPU � Intel Xeon X5650 (6 cores @2.67GHz) �

GPU� NVidia Tesla M2050 (448 cores @1.15GHz)

Environment � Linux 2.6.18 64-bit
CUDA 3.2�

Compiler � Fortran: gfortran 4.4.4
C/C++: gcc 4.4.4

System Configurations for speed comparison�

All comparisons were made using BlueHive*, a
cluster in the Center for Research Computing of
the University of Rochester.�

* https://www.rochester.edu/its/web/wiki/crc/index.php/BlueHive_Cluster �

FSC

Simulation
Type� 2D � 3D �

Space � 78.0×70.2 (c/ωp)2 � 10.4×8.4×7.2 (c/ωp)2 �

Grid � 780×702 � 104×84×72 �

Time step� 0.07ωp
-1 � 0.05 ωp

-1 �

Electrons
per Cell � 36 � 36 �

Total
Electrons � 19,712,160 � 22,634,712 �

Cluster
Size � 13×13 � 13×7×9 �

Benchmark Configurations �

FSC

Performance Benchmark Results�

50�

70�

90�

110�

130�

150�

1�

2�

3�

4�

5�

6�

0eV� 1keV� 10keV� 100keV� 1MeV� 10MeV�

Speedup
�

ns
/p

ar
tic

le
/s

te
p�

Plasma Temperature�

2D �
3D �

FSC

2D Benchmark Result (Te=100keV)�

Procedure�
Tps (ns) �

Speed up�
Percentage

of bandwidth
limit�GPU � CPU �

Particle Pusher� 0.50� 127.30� 255� 40% �

Current
Deposition� 1.51� 96.03� 64� 15% �

Particle Sorting� 0.62� 55.61� 90� 2.3% �

Field Solver� 0.046� 1.86� 40� 46% �

Total� 2.68� 235.04� 88� 17% �

FSC

The GPU kernels can be inserted into existing MPI PIC codes
 to make parallel GPU PIC codes�

•  All computation-heavy
tasks are processed by
GPU kernels.

•  Only the boundary data
should be transferred
between CPU and
GPU, and to
communicate with
neighboring nodes.

•  The GPU memory can
be allocated in the CPU
code using CUBLAS
Fortran wrapper
interface.

Particle
Sorting�

Update Field
Boundary�
Particle

Push�
Current

Deposition�
Update
Particle

Boundary�

Update
Current

Boundary�
Field Solver�

Particle
Sorting�

Update Field
Boundary�
Particle

Push�
Current

Deposition�
Update
Particle

Boundary�

Update
Current

Boundary�
Field Solver�

GPU
memory

Allocation � GPU Kernels �

C
PU

 C
od

e�

OSIRIS-GPU

FSC

Benchmark:2D GPU Accelerated OSIRIS�

Grid � 728×728 �

Space � 72.8×72.8
(c/ωp)2 �

Time
step � 0.07ωp

-1 �

Time� 7.0ωp
-1 �

Part. /
Cell � 36

Electron
s�

19,079,42
4 �

Node
0 �

Node
1 �

Node
3 �

Node
0 �

Node
2 �

Node
0 �

Node
1 �

1x1 � 2x1 �

2x2 �

Each node

FSC

Benchmark Results (5 level smooth) �

3�

4�

5�

6�

ns
/p

ar
tic

le
/s

te
p/

no
de
�

Intel Xeon (1x1/50)�

Intel Xeon (2x2/50)�

M2050 (1x1)�

M2050 (2x1)�

M2050 (2x2)�

FSC

Benchmark Results(100keV, 5-level smooth)�

Intel Xeon 2.66GHz � M2050 �

1x1 � 2x2 � 1x1 � 2x1 � 2x2 �

Total 219.1 221.2 3.559 4.176 5.443

Push + Deposit 207.4 207.4 2.28 2.282 2.284

Sort 2.191 2.063 0.773 0.839 0.812

Field Solver 1.797 1.662 0.071 0.074 0.075

Smooth 3.535 3.561 0.083 0.11 0.094

Update
Boundary 7.709 10.04 0.434 0.979 2.252

FSC Summary
•  Highly-parallel, branch free algorithms that

efficiently use shared memory can greatly
speedup PIC codes using GPU

•  GPU-accelerated supercomputers hold the
promise to quickly expand PIC simulations
to unprecedented speed and scale

