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GPU’s have ~10x computing power of CPUs�
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GPU’s have very high memory bandwidth �
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Many latest generation supercomputers use GPU’s 

•  Programming models such as 
CUDA propel a new 
generation  heterogeneous 
CPU-GPU cluster 

• 3 out of the top 5 fastest 
computer in the world use 
Nvidia GPU’s.  

•  GPU-accelerated clusters are 
also energy-efficiency  

• Exa-scale cluster: 1M GPU’s? 

. . 
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. . 
. 

CPU �

GPU�

CPU �

GPU�

The Heterogeneous serial-
parallel programming model 
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Heterogeneous serial-parallel programming model 

CUDA application = serial program executing parallel kernels 
•  Serial code executed by a CPU thread 
•  Parallel code executed by GPU, in threads (grouped in  

blocks) 
•  Syntax similar to C or Fortran 
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GPU’s employ many (>105) computation threads for any task�

Grid�

· · ·�
Block (0, 0)� Block (1, 0)� Block (M, 0)�

Block (0, N)�

· · ·�

Block (M, N)�Block (1, N)�

· · ·�

· · ·�

· · ·�

Block (0, 1)� Block (1, 1)� Block (M, 1)�


   All threads run the same command (kernel). 


   A kernel is executed as a grid with multiple thread blocks 

• Threads within a block 

cooperate via shared 

memory, atomic 

operations and barrier 

synchronization 

• Threads from different 

blocks cannot 

communicate  �

· · ·�

· · ·�
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Global Memory 
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GPU Memory Hierarchy�

Shared Memory (48 KB/
Block) 

 -Shared among threads in a 
single block 

 -On-chip 
 -As fast as registers 

Global memory (~1GB) 
-Main means of 
communicating R/W Data 
between host and device 
-Contents visible to all 
threads 
-Long latency access 
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Particle-in-Cell Method for Plasma Physics�

Weighting

(x,u)k  Jij  

∂E
∂t

= 4π j − c∇ × B

∂B
∂t

= −c∇ × E

dp
dt

= q E + v
c
× B




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Develop a charge-conserving PIC with CUDA 

•  Bowers et al. (PoP 2008): IBM Cell processors, CC 
current deposit (5.9 ns/particle-step for a cold 
plasma) 

•  Decyk et al. (CPC 2010): spectral code, FFT field 
solver, non-CC current deposit + Poisson Eq. (3.4 
ns/particle-step for a warm plasma) 

•  Burau et al. (IEEE Transaction 2010): parallel, not 
charge-conserving (~7-10 ns/particle-step on a 
single GPU) 
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Divide the task into many threads (EM Field Solver)�

Ez � Ez �

Ez � Ez �

Ey Bx� Ey Bx�
Bz �

Ex By�

Ex By�

Thread(i, j) �
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Use shared memory (EM Field Solver)�

Ez � Ez �

Ez � Ez �

Ey Bx� Ey Bx�
Bz �

Ex By�

Ex By�

Thread(i, j) �

E field can be read into 
shared memory to 
reduce memory transfer �

Used by Thread(i, 
j) and Thread (i-1, 

j) �
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Use shared memory (Field Interpolation and Particle Push)�

Shared 
Memory �Each particle is assigned 

with one thread 

Field data are stored in the 
shared memory 
    - assign a sub-domain 
(cluster) to a block 

Particles need to be sorted 
base on their positions into 
different clusters 
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Finding an efficient parallel sorting scheme: 
Four-pass particle sorting scheme�

Two adjacent clusters are combined into a bi-cluster. 

One block is assigned to sort particles in one bi-cluster.�
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Sorting method: avoid writing conflict and  
reduce data movement�

m: (left → right) 
n:  (left ← right) 
eg. m=2, n=5 

Swap min(m,n) 
particles�

Move |m-n| 
particles to 
holes or buffer 
slots�

Pros: highly parallel (no write conflict) 
         one movement(1 read + 1write) for each sorting particle 
Cons: need to maintain a hole list�
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Swap-Move Sorting Scheme (Cont.) �

After the four pass sorting, the remaining holes in a 
cluster is filled by the particles at the end of data region�
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Charge-conserving current deposition:  
data-dependent branch �
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Avoid Branching: 
Current Split Scheme with Non-Diverged Form�

P0 �

P1 � PM PA PB �

PN �

P0 �

P1 �

PN �

PM �

PA PB �

P0 �

P1 �

PA PB �
PN �

PM �

P0 �

P1 �

PM PA �
PN PB �

P0 �

P1 �

PN PA �
PM PB �

H1=(x1≥x0) 

xA = H1 min(xM, xN )+(1- H1) max(xM , xN ) 

H2=((xM-x0) (xM-x1)<0)&& ((xN-x0) (xN-x1)<0) 

xB = H2 max(xM, xN )+(1- H2) max(xM , xN ) 

xB = H2 xB + (1- H2) xA 

; 
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Multiple threads write/add data to the same J 

grid point  

 –– Write conflict occurs 

 –– Atomic operations are needed (available in 

the latest compute capability) �

Resolve Write Conflict Between Parallel Threads �
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Use shared memory:  
Assign one sub-domain (cluster) to one block �

Shared 
Memory �

To avoid redundant data transfer, current 

field data are stored in shared memory  

→ Particles need to be sorted base on their 

positions 
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The GPU code is benchmarked with OSIRIS �

Grid � 416×392 �
Space � 52.0×49.0 �

Time step� 0.0883ωp
-1 �

Time� 1000.0ωp
-1 �

Electrons 
per Cell �

50 (25 per 
specie) 

Total 
Electrons � 8,153,600 �

Beam 
Energy � 2.5MeV �

Beam/
Plasma 

Temperature
s�

100KeV, 1keV�

Electron Beam-Plasma 
Instability in fast ignition (Kong 
et al., Phys Plasmas 2009�

Relativistic e- beam 

plasma return 
current 
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The single-precision GPU code results agree with those from  
OSIRIS (double-precision) 
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CPU � Intel Xeon X5650 (6 cores @2.67GHz) �

GPU� NVidia Tesla M2050 (448 cores @1.15GHz) 

Environment � Linux 2.6.18 64-bit 
CUDA 3.2�

Compiler � Fortran: gfortran 4.4.4 
C/C++: gcc 4.4.4 

System Configurations for speed comparison�

All comparisons were made using BlueHive*, a 
cluster in the Center for Research Computing of 
the University of Rochester.�

* https://www.rochester.edu/its/web/wiki/crc/index.php/BlueHive_Cluster �
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Simulation 
Type� 2D � 3D �

Space � 78.0×70.2 (c/ωp)2 � 10.4×8.4×7.2 (c/ωp)2 �

Grid � 780×702 � 104×84×72 �

Time step� 0.07ωp
-1 � 0.05 ωp

-1 �

Electrons 
per Cell � 36 � 36 �

Total 
Electrons � 19,712,160 � 22,634,712 �

Cluster 
Size � 13×13 � 13×7×9 �

Benchmark Configurations �
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Performance Benchmark Results�

50�

70�

90�

110�

130�

150�

1�

2�

3�

4�

5�

6�

0eV� 1keV� 10keV� 100keV� 1MeV� 10MeV�

Speedup
�

ns
/p

ar
tic

le
/s

te
p�

Plasma Temperature�

2D �
3D �



FSC 

2D Benchmark Result (Te=100keV)�

Procedure�
Tps (ns) �

Speed up�
Percentage 

of bandwidth 
limit�GPU � CPU �

Particle Pusher� 0.50� 127.30� 255� 40% �

Current 
Deposition� 1.51� 96.03� 64� 15% �

Particle Sorting� 0.62� 55.61� 90� 2.3% �

Field Solver� 0.046� 1.86� 40� 46% �

Total� 2.68� 235.04� 88� 17% �
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The GPU kernels can be inserted into existing MPI PIC codes 
 to make parallel GPU PIC codes�

•  All computation-heavy 
tasks are processed by 
GPU kernels. 

•  Only the boundary data 
should be transferred 
between CPU and 
GPU, and to 
communicate with 
neighboring nodes. 

•  The GPU memory can 
be allocated in the CPU 
code using CUBLAS 
Fortran wrapper 
interface. 
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Benchmark:2D GPU Accelerated OSIRIS�

Grid � 728×728 �

Space � 72.8×72.8 
(c/ωp)2 �

Time 
step � 0.07ωp
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Each node 
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Benchmark Results (5 level smooth) �
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Benchmark Results(100keV, 5-level smooth)�

Intel Xeon 2.66GHz � M2050 �

1x1 � 2x2 � 1x1 � 2x1 � 2x2 �

Total 219.1 221.2 3.559 4.176 5.443 

Push + Deposit 207.4 207.4 2.28 2.282 2.284 

Sort 2.191 2.063 0.773 0.839 0.812 

Field Solver 1.797 1.662 0.071 0.074 0.075 

Smooth 3.535 3.561 0.083 0.11 0.094 

Update 
Boundary 7.709 10.04 0.434 0.979 2.252 



FSC Summary 
•  Highly-parallel, branch free algorithms that 

efficiently use shared memory can greatly 
speedup PIC codes using GPU 

•  GPU-accelerated supercomputers hold the 
promise to quickly expand PIC simulations 
to unprecedented speed and scale  


