
Introduction PSC Summary

Dynamic Load-Balancing and GPU Computing
With the Particle-In-Cell Code PSC

K. Germaschewski1,
H. Ruhl2, Will Fox1, and A. Bhattacharjee1

1 Space Science Center / Dept. of Physics
University of New Hampshire

2 Ludwig-Maximilians University, Munich

September 9, 2011

K. Germaschewski, H. Ruhl, Will Fox, and A. Bhattacharjee PIC: Load Balancing and GPUs



Introduction PSC Summary

Outline

1 Introduction
Plasma Bubbles
Heterogeneous Computing

2 Particle Simulation Code
Parallel Scaling
Load Balancing
PSC on GPUs

3 Summary / Outlook

K. Germaschewski, H. Ruhl, Will Fox, and A. Bhattacharjee PIC: Load Balancing and GPUs



Introduction PSC Summary Plasma Bubbles Heterogeneous Computing

Plasma Bubbles

K. Germaschewski, H. Ruhl, Will Fox, and A. Bhattacharjee PIC: Load Balancing and GPUs



Introduction PSC Summary Plasma Bubbles Heterogeneous Computing

Plasma Bubbles

K. Germaschewski, H. Ruhl, Will Fox, and A. Bhattacharjee PIC: Load Balancing and GPUs



Introduction PSC Summary Plasma Bubbles Heterogeneous Computing

Plasma Bubbles

K. Germaschewski, H. Ruhl, Will Fox, and A. Bhattacharjee PIC: Load Balancing and GPUs



Introduction PSC Summary Plasma Bubbles Heterogeneous Computing

Plasma Bubbles

K. Germaschewski, H. Ruhl, Will Fox, and A. Bhattacharjee PIC: Load Balancing and GPUs



Introduction PSC Summary Plasma Bubbles Heterogeneous Computing

Plasma Bubbles

K. Germaschewski, H. Ruhl, Will Fox, and A. Bhattacharjee PIC: Load Balancing and GPUs



Introduction PSC Summary Plasma Bubbles Heterogeneous Computing

Plasma Bubbles

K. Germaschewski, H. Ruhl, Will Fox, and A. Bhattacharjee PIC: Load Balancing and GPUs



Introduction PSC Summary Plasma Bubbles Heterogeneous Computing

Plasma Bubbles

K. Germaschewski, H. Ruhl, Will Fox, and A. Bhattacharjee PIC: Load Balancing and GPUs



Introduction PSC Summary Plasma Bubbles Heterogeneous Computing

Heterogeneous computing

multi-core Cell GPGPU

OS runs on any core PPU host CPU
main code on any core PPU host CPU
comput. kernels on any core SPUs GPGPU MP
memory architecture main memory main memory main memory

caches per-SPU local store GPGPU memory
shared memory

data movement transparent DMA for moving data explicit
SIMD explicit explicit automatic
threads few no (?) many
efficient programming hard hard hard

K. Germaschewski, H. Ruhl, Will Fox, and A. Bhattacharjee PIC: Load Balancing and GPUs



Introduction PSC Summary Plasma Bubbles Heterogeneous Computing

Heterogeneous computing

...

K. Germaschewski, H. Ruhl, Will Fox, and A. Bhattacharjee PIC: Load Balancing and GPUs



Introduction PSC Summary Plasma Bubbles Heterogeneous Computing

Heterogeneous computing

Heterogeneous architectures compared to modern Intel
quadcore processor:

IBM nvidia nvidia intel
PowerXCell 8i Tesla C1060 Fermi C2050 i7 E5520

cores 8+1 30 30 4

sng GFlop/s 204.8 933 1030 72.3
2.8x 12.9x 14.2x

dbl GFlop/s 102.4 78 515 36.2
2.8x 2.15x 14.2x

GByte/s 25.6 102 144 21.8
1.2x 4.7x 6.6x

K. Germaschewski, H. Ruhl, Will Fox, and A. Bhattacharjee PIC: Load Balancing and GPUs



Introduction PSC Summary Plasma Bubbles Heterogeneous Computing

Heterogeneous computing

Heterogeneous computing: Lessons learned
Heterogeneous architecture provide very substantial gains
in performance and power efficiency.
Programming them efficiently is hard (and fun). The future
is unpredictable – though it’s quite clear that heterogeneity
will play a role on the way to the exascale.

=⇒ Just let the computer do the hard work!

Automatic code generation lets you input your finite-difference /
finite-volume equations in near symbolic form as a stencil
computation, and then does all the work the generate efficient
code for Cell / SSE2 / GPUs.

K. Germaschewski, H. Ruhl, Will Fox, and A. Bhattacharjee PIC: Load Balancing and GPUs



Introduction PSC Summary Scaling Load Balancing PSC on GPUs

PSC – Particle Simulation Code

PIC: Solves Vlasov-Maxwell equations by representing the
distribution function f by meta-particles.

The Particle Simulation Code (PSC) features:
3D and reduced dimensions (1D, 2D)
electromagnetic
boost frame, moving window, PMLs, collisions, ionization...
(work in progress) adaptive mesh refinement, momentum
space refinement, QED
modular architecture: switching from legacy Fortran
particle pusher to GPU pusher can be done on the
command line.

K. Germaschewski, H. Ruhl, Will Fox, and A. Bhattacharjee PIC: Load Balancing and GPUs



Introduction PSC Summary Scaling Load Balancing PSC on GPUs

PSC – Parallel scaling

Explicit PIC scales well:
Parallel efficiency is better than 90%.

8 32 128 512 2048 8192 32768 131072
number of cores

0

500000

1000000

1500000

2000000

2500000

p
a
rt

ic
le

s 
/ 

se
c 

/ 
co

re

3D (16 x 16 x 16 cells per core, Hopper)
2D (16 x 16 cells per core, Hopper)
2D (10 x 10 cells per core, Jugene)

K. Germaschewski, H. Ruhl, Will Fox, and A. Bhattacharjee PIC: Load Balancing and GPUs



Introduction PSC Summary Scaling Load Balancing PSC on GPUs

PSC – Load balancing

The problem with PIC simulations:

Those darn particles keep on moving!

PIC codes parallelized via domain decomposition often become
unbalanced over time – even if balanced nicely at the start of
the simulation.

Rebalance by moving domain boundaries:

K. Germaschewski, H. Ruhl, Will Fox, and A. Bhattacharjee PIC: Load Balancing and GPUs



Introduction PSC Summary Scaling Load Balancing PSC on GPUs

PSC – Load balancing

K. Germaschewski, H. Ruhl, Will Fox, and A. Bhattacharjee PIC: Load Balancing and GPUs



Introduction PSC Summary Scaling Load Balancing PSC on GPUs

PSC – Load balancing: patches

Straight-forward domain decomposition onto 4 procs

Color indicates the processor responsible for the corresponding part
of the domain.

K. Germaschewski, H. Ruhl, Will Fox, and A. Bhattacharjee PIC: Load Balancing and GPUs



Introduction PSC Summary Scaling Load Balancing PSC on GPUs

PSC – Load balancing: patches

64 patches onto 4 procs

Color indicates the processor responsible for the corresponding part
of the domain.

K. Germaschewski, H. Ruhl, Will Fox, and A. Bhattacharjee PIC: Load Balancing and GPUs



Introduction PSC Summary Scaling Load Balancing PSC on GPUs

PSC – Load balancing: patches

Color indicates the processor responsible for the corresponding part
of the domain.

K. Germaschewski, H. Ruhl, Will Fox, and A. Bhattacharjee PIC: Load Balancing and GPUs



Introduction PSC Summary Scaling Load Balancing PSC on GPUs

PSC – Load balancing: patches

Color indicates the processor responsible for the corresponding part
of the domain.

K. Germaschewski, H. Ruhl, Will Fox, and A. Bhattacharjee PIC: Load Balancing and GPUs



Introduction PSC Summary Scaling Load Balancing PSC on GPUs

PSC – Load balancing: patches

Color indicates the processor responsible for the corresponding part
of the domain.

K. Germaschewski, H. Ruhl, Will Fox, and A. Bhattacharjee PIC: Load Balancing and GPUs



Introduction PSC Summary Scaling Load Balancing PSC on GPUs

PSC – Load balancing: patches

Color indicates the processor responsible for the corresponding part
of the domain.

K. Germaschewski, H. Ruhl, Will Fox, and A. Bhattacharjee PIC: Load Balancing and GPUs



Introduction PSC Summary Scaling Load Balancing PSC on GPUs

PSC – Load balancing

without patch-based load balancing

K. Germaschewski, H. Ruhl, Will Fox, and A. Bhattacharjee PIC: Load Balancing and GPUs



Introduction PSC Summary Scaling Load Balancing PSC on GPUs

PSC – Load balancing

with patch-based load balancing

K. Germaschewski, H. Ruhl, Will Fox, and A. Bhattacharjee PIC: Load Balancing and GPUs



Introduction PSC Summary Scaling Load Balancing PSC on GPUs

PSC – Load balancing

K. Germaschewski, H. Ruhl, Will Fox, and A. Bhattacharjee PIC: Load Balancing and GPUs



Introduction PSC Summary Scaling Load Balancing PSC on GPUs

PSC on GPUs

Particle-in-cell algorithm
for timestep n = 0,1,2,...:

for each particle m:
advance position and momentum: ~xn

m → ~xn+1
m , ~pn

m → ~pn+1
m

(using interpolated ~En+1/2, ~Bn+1/2)
deposit current density contribution~jn+1

m onto mesh.
advance fields: ~En+1/2, ~Bn+1/2 → ~En+3/2, ~Bn+3/2 using~jn+1.

K. Germaschewski, H. Ruhl, Will Fox, and A. Bhattacharjee PIC: Load Balancing and GPUs



Introduction PSC Summary Scaling Load Balancing PSC on GPUs

PSC on GPUs

Multi-level decomposition of the problem, expose
parallelism

At the top-level, decompose spatial domain into patches.
Each MPI process gets assigned one or more patches.
Patches communicate via ghost cells / particle exchange.
(Hybrid level could be introduced here: Each MPI process
will distribute patches onto a set of cores or GPUs using
OpenMP / threads)
Each patch gets further divided into blocks (a.k.a.
supercells) of multiple cells. These blocks are handled (in
parallel) by threadblocks.
The particles in a block are processed in parallel by
threads in the threadblock.

K. Germaschewski, H. Ruhl, Will Fox, and A. Bhattacharjee PIC: Load Balancing and GPUs



Introduction PSC Summary Scaling Load Balancing PSC on GPUs

PSC on GPUs

Particle advance (no field caching)
m := threadIdx + blockDim ∗ blockIdx
while m < number of particles:

position ~xn+1/2
m := ~xn

m + .5∆t~vn
m

interpolate force ~F n+1/2
m from ~En+1/2, ~Bn+1/2

momentum ~pn+1
m := ~pn

m + ∆t~F n+1/2
m

position ~xn+1
m := ~xn+1/2

m + .5∆t~vn+1
m

m := m + blockDim ∗ gridDim

Naive implementation of the particle pusher is easy to write,
works reasonably well – though limited by reading the E&M
field values for each particle (56 field values per particle in 2D).

K. Germaschewski, H. Ruhl, Will Fox, and A. Bhattacharjee PIC: Load Balancing and GPUs



Introduction PSC Summary Scaling Load Balancing PSC on GPUs

PSC on GPUs

Particle advance (field caching)
get block_first , block_last for blockIdx
cache ~En+1/2, ~Bn+1/2 fields for blockIdx

in shared mem
for (m := block_first + threadIdx ;

m < block_last ; m := m + blockDim):
position ~xn+1/2

m := ~xn
m + .5∆t~vn

m

interpolate force ~F n+1/2
m from ~En+1/2, ~Bn+1/2

momentum ~pn+1
m := ~pn

m + ∆t~F n+1/2
m

position ~xn+1
m := ~xn+1/2

m + .5∆t~vn+1
m

Requires sorting of particles by blocks, but then fields in each
block are read only once from global memory – cost is
amortized over 1000s of particles.

K. Germaschewski, H. Ruhl, Will Fox, and A. Bhattacharjee PIC: Load Balancing and GPUs



Introduction PSC Summary Scaling Load Balancing PSC on GPUs

PSC on GPUs – particle advance timing

Kernel Performance [particles/sec]

2d push, no field caching 199× 106

2d push, cache 1× 1 blocks 624× 106

2d push, cache 2× 2 blocks 901× 106

2d push, cache 4× 4 blocks 972× 106

2d push, cache 8× 8 blocks 962× 106

2d push, cache 16× 16 blocks 531× 106

Benchmark using 200 particles per cell, on a single nvidia Tesla
C1060 card.

K. Germaschewski, H. Ruhl, Will Fox, and A. Bhattacharjee PIC: Load Balancing and GPUs



Introduction PSC Summary Scaling Load Balancing PSC on GPUs

PSC on GPUs

Current deposition

Current deposition is a much harder problem, since now
multiple threads (handling one particle each) may contribute to
the same output, ie., current in a certain location.
Potential solutions:

Atomic updates
Reduction using shared memory
Process particles that are far enough apart so that no
conflicts can occur.

Use coloring to prevent inter-threadblock conflicts:

K. Germaschewski, H. Ruhl, Will Fox, and A. Bhattacharjee PIC: Load Balancing and GPUs



Introduction PSC Summary Scaling Load Balancing PSC on GPUs

PSC on GPUs

Current deposition – atomic updates

Atomic updates for float variables available on Fermi
architecture, can be emulated on others.
Store currents for block in shared memory, shared between
threads processing particles in this block of cells in parallel.
Only need particles sorted by block.
Expensive if lots of conflicts.
Floating point math is not associative, results will not be
exactly reproducible.

Kernel Performance [particles/sec]

atomicAdd(), sorted by cell 25× 106

atomicAdd(), sorted by block 52× 106

atomicAdd(), randomized by block 101× 106

K. Germaschewski, H. Ruhl, Will Fox, and A. Bhattacharjee PIC: Load Balancing and GPUs



Introduction PSC Summary Scaling Load Balancing PSC on GPUs

PSC on GPUs

Current deposition – reduction

Threads work together, rather than compete
Store currents for block in shared memory, shared between
threads processing particles in this block of cells in parallel.
Needs particles sorted by cell, additional effort computing
zeros
Not sensitive to conflicts
Deterministic, results are reproducible

Kernel Performance [particles/sec]

reduce per threadblock 95× 106

reduce per warp 101× 106

process warp-many cells 105× 106

combine reductions 111× 106

K. Germaschewski, H. Ruhl, Will Fox, and A. Bhattacharjee PIC: Load Balancing and GPUs



Introduction PSC Summary Scaling Load Balancing PSC on GPUs

PSC on GPUs

Current deposition
get cell_first , cell_last for blockIdx

for (m := cell_first + threadIdx ; m < cell_last ; m := m + blockDim):
for iz = −2,−1, 0, 1, 2:

calculate JX (iy = {−2,−1, 0, 1, 2}, iz) in shared memory
reduce JX over all threads in threadblock
add reduced JX to current densityx in global mem (single thread)

for iz = −2,−1, 0, 1, 2:
calculate JY (iy = {−2,−1, 0, 1, 2}, iz) in shared memory
reduce JY over all threads in threadblock
add reduced JY to current densityy in global mem (single thread)

for iy = −2,−1, 0, 1, 2:
calculate JZ (iy , iz = {−2,−1, 0, 1, 2}) in shared memory
reduce JZ over all threads in threadblock
add reduced JZ to current densityz in global mem (single thread)

K. Germaschewski, H. Ruhl, Will Fox, and A. Bhattacharjee PIC: Load Balancing and GPUs



Introduction PSC Summary Scaling Load Balancing PSC on GPUs

PSC on GPUs – Performance

Kernel Performance [particles/sec]

1D push & current, FORTRAN 9.32× 106

1D push & current, C, 12.16× 106

1D push & current, CUDA 333× 106

2D push & current, FORTRAN 9.97× 106

2D push & current, C 12.0× 106

2D push & current, CUDA 98.5× 106

Intel Xeon E5640, Nvidia Tesla C2050
128× 128 grid cells, 256 particles / cell

K. Germaschewski, H. Ruhl, Will Fox, and A. Bhattacharjee PIC: Load Balancing and GPUs



Introduction PSC Summary

Summary / Outlook

The new version of PSC shows excellent parallel scalability
to 10k’s of cores.
Load balancing of particle-in-cell using subdivision into
patches and a space-filling curve to distribute the load
works well.
Particle-in-cell can be accelerated by GPUs significantly,
but involves a lot of manual work for proper tuning.

Particle pusher was fairly easy to port.
Current deposition is tricky and performance is not optimal.

K. Germaschewski, H. Ruhl, Will Fox, and A. Bhattacharjee PIC: Load Balancing and GPUs


	Introduction
	Plasma Bubbles
	Heterogeneous Computing

	Particle Simulation Code
	Parallel Scaling
	Load Balancing
	PSC on GPUs

	Summary / Outlook

