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Outline of Presentation

• Abstraction of future computer hardware
• PIC on GPUs
• OpenCL and Cuda Fortran
• OpenMP
• Hybrid MPI/OpenMP
• GPU and MPI
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Revolution in Hardware

Many new architectures
• Multi-core processors
• SIMD accelerators, GPUs
• Low power embedded processors, FPGAs

How does one cope with this variety?

Which path leads to prosperity?

Friday, October 7, 2011



Unrest in Parallel Software

Two common programming models:
• Distributed memory: MPI
• Shared memory: OpenMP

MPI has dominated high performance computing
• MPI generally worked better even on shared memory hardware
• Shared memory programming models did not scale well

Resurgence in shared memory models
• CUDA on GPUs works well with hundreds of cores
• PGAS Models evolving: Chapel, X10, Co-Array Fortran, UPC
• Ease of programming a major concern

Can we avoid different programming models for different hardware?
How will it all turn out?
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Coping Strategy: Program to Simple Hardware Abstraction with Adaptable Algorithms

A distributed memory node consists of
• SIMD (vector) unit works in lockstep with fast shared memory and synchronization
• Multiple SIMD units coupled via “slow” shared memory and synchronization

Distributed Memory nodes coupled via MPI

Memory is slower than computation, and best accessed with stride 1 addressing
 • Streaming algorithms (data read only once) are optimal

Similar to OpenCL model, future exascale computers may be built from these

SIMD SIMD SIMD

Fast Shared Fast Shared Fast Shared

“Slow” Shared Memory

SIMD SIMD SIMD

Fast Shared Fast Shared Fast Shared

“Slow” Shared Memory

MPI node MPI node

<-MPI->
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GPUs are graphical processing units which consist of:
• 12-30 SIMD multiprocessors, each with small (16-48KB),  fast (4 clocks) shared memory
• Each multi-processor contains 8-32 processor cores
• Large (0.5-6.0 GB), slow (400-600 clocks) global shared memory, readable by all units
• No cache on some units
• Very fast (1 clock) hardware thread switching

GPU Technology has two special features:
• High bandwidth access to global memory (>100 GBytes/sec)
• Ability to handle thousands of threads simultaneously, greatly reducing memory “stalls”

Challenges:
• High global memory bandwidth is achieved mainly for stride 1 access
   (Stride 1 = adjacent threads read adjacent locations in memory)
• Best to read/write global memory only once
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This abstract hardware model matches GPUs very well
• But can be adapted to other hardware.

On NVIDIA GPU:
• Vector length = block size (typically 32-128)
• Fast shared memory = 16-64 KB.

On Intel multicore:
• Vector length for CPU = 1
• Vector length for SSE = 4
• Fast shared memory = L1 Cache
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Designing New Particle-in-Cell (PIC) Algorithms

Most important bottleneck is memory access
• PIC codes have low computational intensity (few flops/memory access)
• Memory access is irregular (gather/scatter)

PIC codes can implement a streaming algorithm by keeping particles ordered by cell.
• Minimizes global memory access since field elements need to be read only once.
• Cache is not needed, gather/scatter can be avoided.
• Deposit and particles update can have optimal stride 1 access.
• Single precision can be used for particles

Additional benefits for SIMD
• Each cell with associated particles can be processed independently and in lockstep
• Many cells mean fine grain parallelism is possible

Challenge: optimizing particle reordering
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Designing New Particle-in-Cell (PIC) Algorithms: GPU

GPU PIC Algorithm
• Particles kept ordered each time step by use of sorting cells
• Sorting cell can contain multiple grids
• Adaptable with 4 adjustable parameters to match architecture
• Domain decomposition used to avoid data dependencies

First written in OpenMP (loop) style, in both Fortran and C.

Minimal changes in translating to CUDA
• Replace the loops over threads: “for (m = 0; m < mth; m++)” => “m = blockIdx.x”
   with the CUDA construct:           “for (l = 0; l < lth; l++)”          => “l = threadIdx.x”
• Write Fortran callable host functions which invoke kernel subroutine on GPU

Reference:

V. K. Decyk and T. V. Singh, “Adaptable Particle-in-Cell Algorithms for Graphical 
Processing Units,” Computer Physics Communications, 182, 641, 2011.

See also: http://www.idre.ucla.edu/hpc/research/
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Evaluating New Particle-in-Cell (PIC) Algorithms on GPU: Electromagnetic Case

Warm Plasma results with c/vth = 10, dt = 0.04
             Intel Nehalem   Fermi C2050  Tesla C1060   GTX 280
Push            81.7 ns.       0.89 ns.     1.13 ns.    1.08 ns.
Deposit         40.7 ns.       0.78 ns.     1.06 ns.    1.04 ns.
Reorder          0.5 ns.       0.57 ns.     1.13 ns.    0.97 ns.
Total Particle 122.9 ns.       2.24 ns.     3.32 ns.    3.09 ns.

The time reported is per particle/time step.
The total speedup on the Fermi C2050 was 55x,
on the Telsa C1060 was 37x, and on the GTX 280 was 40x.

Cold Plasma (asymptotic) results with vth = 0, dt = 0.025
             Intel Nehalem   Fermi C2050  Tesla C1060   GTX 280
Push            78.5 ns.       0.51 ns.     0.79 ns.    0.74 ns.
Deposit         37.3 ns.       0.58 ns.     0.82 ns.    0.81 ns.
Reorder          0.4 ns.       0.10 ns.     0.16 ns.    0.15 ns.
Total Particle 116.2 ns.       1.20 ns.     1.77 ns.    1.70 ns.

The time reported is per particle/time step.
The total speedup on the Fermi C2050 was 97x,
on the Telsa C1060 was 66x, and on the GTX 280 was 69x.
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Other parallel languages: OpenCL

OpenCL is  a portable, parallel language
• Kernel procedures map easily between Cuda C and OpenCL.
• Kernel procedures have to be strings, compiled at run time
• Host functions very different, more complex
• Initializing OpenCL: 225 lines of code!

Performance with NVIDIA’s CUDA C and OpenCL
• OpenCL about 23% slower than CUDA C
• no FFT available on NVIDIA’s OpenCL (solver turned off in this test)
• Overhead in launching kernels about 2-6 x higher in OpenCL than CUDA C

Performance on NVIDIA GPU with Apple OpenCL
• Apple’s OpenCL about 60% slower than CUDA C
• FFT available from Apple’s Web site, but only works on Apple computers

Performance on AMD GPU with AMD OpenCL
• AMD HD5870 with OpenCL about 20% slower than NVIDA C1060 with Cuda C
• AMD GPU has much less shared memory
• AMD GPU did not allow an array larger than about 134 MB
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Other parallel languages: CUDA Fortran from PGI

CUDA Fortran somewhat easier to use than CUDA C
• Host and GPU memory only differ by attribute
• Copying an array from host to GPU or back is just an assignment.
• Limitation: dynamic shared memory must all be same type

Performance on NVIDIA GPU with CUDA C and  CUDA Fortran
• CUDA Fortran about 9% slower than CUDA C
• CUDA’s FFT can be called from CUDA Fortran using ISO_C_BIND (F2003 feature)
• Overhead in launching kernels is the same in CUDA Fortran and CUDA C
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Conclusions for GPU:

OpenCL is portable, but painful and slow
• Will be future be OpenCL or CUDA, or something else?

CUDA Fortran is somewhat easier to use than CUDA C, and gives good performance
• Very strict with types
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Shared Memory Programming for PIC

Multi-core architectures have increasing numbers of CPUs

New shared memory parallel languages are being developed by computers scientists
• Computer Scientists are often more interested in ease of programming than performance

Is OpenMP useful in this environment?
• Historically, MPI has usually outperformed OpenMP
• OpenMP was usually limited to shared memory machines
• OpenMP does not have enough features to program GPUs

So why bother with OpenMP?
• It is a simple language
• A shared memory PIC code in OpenMP can be used as a starting point
   for developing PIC codes in other shared memory languages
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OpenMP Programming for PIC

Domain decomposition is useful in shared memory architectures
• Avoids data dependencies
• Partitioning data gives better cache performance
• Domain decomposition is scalable
• Proved to be useful on GPUs

We decided to implement in OpenMP, the same domain decomposition used by MPI

There are two styles of programming OpenMP:

Most common is the loop style
   !$OMP PARALLEL DO
   !$OMP& PRIVATE(l,n,m,...)
   !$OMP& REDUCTION(+:ke)
      do l = 1, nblok
         ...
      enddo
!$OMP END PARALLEL DO

In implementing domain decomposition in OpenMP, we set the loop index nblok = nproc
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OpenMP Programming for PIC: loop style

In the MPI code, we have a communications utility library with 4 major procedures:
• Add/copy guard cells
• Transpose (used by FFT)
• Particle manager (to move particles to correct processor)
• Field manager (to move field elements between uniform/non-uniform partitions)

The remaining procedures do not use communications:
• Push, deposit, field solver, FFT

Implementing non-communicating procedures in OpenMP was easy
• Add a do loop and an additional index in the all the distributed arrays

In implementing the communications library, new, simpler algorithms were developed
• Processors could directly read the data they need without receiving a message

Some of the lessons learned:
• OpenMP can be tricky: race conditions are easy to trigger
• Be very careful about declaring private data (data which is replicated inside the loop)
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OpenMP Programming for PIC: SPMD style

The other style of programming OpenMP is the SPMD style
• Described in Chapman, Jost, and van de Pas, Using OpenMP

In this style, the entire program is a parallel region, but data is still partitioned
• The main program has the declaration:

!$OMP PARALLEL DEFAULT(none)
!$OMP& SHARED(part,qe,fxye.,,,)
!$OMP& PRIVATE(j,l,np,nx,ny,...)
!$OMP& FIRSTPRIVATE(idimp,ipbc,ntpose,...)
         ...
!$OMP END PARALLEL

Main program passes a different partition of global arrays to each procedure

Non-communicating procedures look like the MPI procedures
• No parallel loops, no partitioning

Communicating procedures look like OpenMP procedures, except
• omp_get_thread_num() procedure used instead of parallel loop
• barriers, single and critical regions are added if needed
• looks somewhat like GPU programming with CUDA
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Data Shows OpenMP can be competitive 
with MPI, but somewhat slower

SPMD style slightly faster than loop style

Lessons learned:
• OpenMP has more synchronization points than MPI, all synchronizations are global
• Communication procedures are simpler in OpenMP
• SPMD style had fewer synchronization points than loop style
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Hybrid MPI/OpenMP Programming for PIC

Used Nested domain decompositions
• Each shared memory node has its own domain
• Edges of shared memory domain define MPI domain

MPI node MPI node

Allows fine grained partitions with reduced communications requirements
• Prototype for GPU-MPI decomposition

Friday, October 7, 2011



FFT gives nearly 3 times better performance with MPI-OpenMP than MPI alone
Overall, spectral code gets more than 4 times better performance

Friday, October 7, 2011



Application to GPU

Modularize the 4 hybrid MPI-OpenMP communicating procedures
• Isolate OpenMP calls into separate subroutines
• Replace OpenMP subroutines with CUDA

With replaceable modules, main code can be used with either GPUS or CPUs
• OpenMP subroutines can also be replaced with MPI-2, pthreads, ...
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Dawson2 at UCLA: 96 nodes, ranked 148 in top 500, 68 TFlops on Linpack
 • Each node has: 12 Intel G7 X5650 CPUs and 3 NVIDIA M2070 GPUs.
 • Each GPU has 448 cores: total GPU cores=129,024 cores, total CPU cores=1152
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Conclusions

• Programming to Hardware Abstraction leads to common algorithms
• Streaming algorithms optimal for memory-intensive applications
• OpenCL portable, but painful and slow
• Hybrid MPI/OpenMP useful for communication intensive algorithms
• Modular nested domain decompositions appear promising for GPU cluster
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