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Outline

ä Particle methods for plasma simulation (PIC)

ä State of the art algorithm: explicit approach

ä Status of implicit PIC: problems and limitations

ä Our approach: energy and charge-conserving implicit PIC

ë Vlasov-Ampere vs. Vlasov-Poisson

ë Exact energy-conserving formulation

ë Exact charge-conserving mover

ë Momentum conservation error control: orbit adaptivity

ä Implementation on GPU architectures
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Particle-in-cell (PIC) methods for kinetic plasma simulation

∂t f + v · ∇ f +
F
m
· ∇v f =

(
∂ f
∂t

)
col

ä Ignoring collisions⇒ Lagrangian solution by the method of characteristics:

f (x, v, t) = f0

(
x−

∫ t

0
dtv, v− 1

m

∫ t

0
dtF
)

; x(t = 0) = x0 ; v(t = 0) = v0

ä PIC approach follows characteristics employing macroparticles (volumes in phase space)

f (x, v, t) = ∑p δ(x− xp)δ(v− vp)

ẋp = vp

v̇p =
qp

mp
(E + v× B)

∂tB +∇× E = 0

−µ0ε0∂tE +∇× B = µ0j

∇ · B = 0

∇ · E =
e(ni − ne)

ε0

δ(x− xp) −→ S(x− xp) ; Ep = ∑
i

EiS(xi − xp) ; Ei = ∑
p

EiS(xi − xp)
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State-of-the-art classical PIC algorithm is explicit

ä Classical explicit PIC approach �leap-frogs� particle positions and velocities, solves for �elds after

position update:

ä Severe performance limitations:

ë ∆x < λDebye (�nite-grid instability: enforces a minimum spatial resolution)

ë ωpe∆t < 1 (CFL-type instability: enforces a minimum temporal resolution)

ë Ine�cient for long-time, large-scale integrations

ä In the presence of strong magnetic �elds, gyro-averaging the Vlasov-Maxwell model can signif-

icantly ameliorate these limitations, but there are other issues (e.g. not asymptotic preserving,

required order of expansion to capture some physical e�ects, treatment of nonlinear terms)

We focus on electrostatic PIC as a proof of principle
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What about implicit PIC?

ä Implicit PIC holds the promise of overcoming the di�culties and ine�ciencies of explicit methods

ä Exploration of implicit PIC started in the 1980s

ë Moment method [Mason, 1981; Brackbill, 1982]

ë Direct method [Friedman, Langdon, Cohen, 1981]

ä Early approaches used linearized, semi-implicit formulations:

ë Lack of nonlinear convergence

ë Inconsistencies between particles and moments

ë Inaccuracies! →Plasma self-heating/cooling [Cohen, 1989]

Our goal is to explore the viability of a nonlinearly converged, fully implicit PIC algorithm

What is the nature of the resulting fully-coupled algebraic system?

Is it practical to invert?
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Fully implicit PIC formulation

ä A fully implicit formulation couples particles and �elds non-trivially (integro-di�erential PDE):

f n+1− f n

∆t
+ v · ∇ f n+1 + f n

2
− q

m
∇Φn+1 + Φn

2
· ∇v

f n+1 + f n

2
= 0

∇2Φn+1 =
∫

dv f n+1(x, v, t)

ä In PIC, f n+1 is sampled by a large collection of particles in phase space, {x, v}n+1
p .

ë There are Np particles, each particle requiring 2× d equations (d→dimensions),

ë Field requires Ng equations, one per grid point.

ä If implemented naively, an impractically large algebraic system of equations results:

G({x, v}n+1
p , {Φn+1}g) = 0 → dim(G) = 2dNp + Ng � Ng

ë No current computing mainframe can a�ord the memory requirements

ë Algorithmic issues are showstoppers (e.g., how to precondition it?)

ä An alternative strategy exists: nonlinear elimination (particle enslavement)
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Particle enslavement (nonlinear elimination)

ä Full residual G({x, v}p, {Φ}g) = 0 is impractical to solve

ë Very large storage requirements

ë In�exible particle-orbit treatment (crucial for long-term accuracy)

ä Alternatively, one can nonlinearly eliminate particle quantities so that they are not explicit

unknowns:

ë Formally, particle equations of motion are functionals of the electrostatic potential:

xn+1
p = xp[Φn+1] ; vn+1

p = vp[Φn+1]

G(xp
n+1, vp

n+1, Φn+1) = G(x[Φn+1], v[Φn+1], Φn+1) = G̃(Φn+1)

Nonlinear residual can be unambiguously formulated in terms of electrostatic potential only!

ä JFNK storage requirements are dramatically decreased, making it tractable:

ë Solver storage requirements ∝ Ng, comparable to a �uid simulation

ë Particle quantities ⇒ auxiliary variables: only a single copy of particle population

needs to be maintained in memory throughout the nonlinear iteration
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Jacobian-Free Newton-Krylov Methods

ä After spatial and temporal discretization ⇒ a large set of nonlinear equations: ~G(~xn+1) =~0

ä Converging nonlinear couplings requires iteration: Newton-Raphson method:

∂~G
∂~x

∣∣∣∣∣
k

δ~xk = −~G(~xk)

ä Jacobian linear systems result, which require a linear solver⇒ Krylov subspace methods (GMRES)

ë Only require matrix-vector products to proceed.

ë Jacobian-vector product can be computed Jacobian-free:(
∂~G
∂~x

)
k

~y = Jk~y = lim
ε→0

~G(~xk + ε~y)− ~G(~xk)
ε

ë Krylov methods can be easily preconditioned: P−1
k ∼ J−1

k

JkP−1
k Pkδ~x = ~−Gk

ä In this study, we will use the identity preconditioner.
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Field equation: Vlasov-Poisson vs. Vlasov-Ampere

ä Nonlinear elimination procedure leads to G(Φ) = 0 (or G(E) = 0)
ä Two formulations are possible:

Vlasov-Poisson (VP) Vlasov-Ampère (VA)

∂t f + v∂x f +
qE
m

∂v f = 0

∂xE =
ρ

ε0

E = −∂xΦ

∂t f + v∂x f +
qE
m

∂v f = 0

ε0∂tE + j = 〈j〉

Two systems are equivalent in continuum, but not in the discrete.

ä Conventionally used in explicit PIC.

ä Exact local charge conservation.

ä Exact global momentum conservation.

ä Unstable with orbit averaging in implicit

context [Cohen and Freis, 1982].

ä Exact local charge conservation.

ä Exact global energy conservation.

ä Suitable for orbit averaging.

ä Can be extended to electromagnetic sys-

tem.

ä We will show, however, that an equivalent energy-conserving VP formulation exists.
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Energy-conserving (EC) Vlasov-Ampère discretization

ä Fully implicit Crank-Nicolson time discretization:

ä C-N enforces energy conservation to numerical round-o�:

ä As a result, the formulation does not su�er from �nite-grid instabilities (normal mode analysis)

ë Unconstrained spatial resolution: ∆x ≮ λD !!

ä Energy conservation is only realized when particles and �elds are nonlinearly converged:

ë Requires a tight nonlinear tolerance
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Algorithmic implementation details

ä The nonlinear residual formulation G(En+1) based on Vlasov-Ampere formulation is as follows:

1. Input E (given by JFNK iterative method)

2. Move particles (i.e., �nd xp[E], vp[E] by solving equations of motion)

(a) Requires inner (local) nonlinear iteration: Picard (not sti�)

(b) Can be as complicated as we desire (substepping, adaptivity, etc)

3. Compute moments (current)

4. Form Vlasov-Ampere equation residual

5. return

ä Because particle move is performed within function evaluation, we have much freedom.

ä Rest of the talk will describe improvements in particle mover to ensure long-term accuracy

ë Particle substepping and orbit averaging (ensures orbit accuracy and preserves exact

energy conservation)

ë Exact charge conservation strategy (a new charge-conserving particle mover)

ë Orbit adaptivity (to improve momentum conservation)
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Particle orbit substepping

ä In applications of interest, �eld time-scale (∆t) and orbit time-scale (∆τ) can be well separated

ë Fields evolve slowly (dynamical time scale, ∆t)
ë Particle orbits may still undergo rapid change (∆τ � ∆t)

ä Particle orbits need to be resolved to avoid large orbit integration errors

Accurate orbit integration requires particle substepping!

ä Field does not change appreciably: time-averaged value over long time scale is su�cient

xν+1
p − xν

p

∆τ
= vν+1/2

p

vν+1
p − vν

p

∆τ
= ∑

i

En+1
i + En

i

2︸ ︷︷ ︸
slow

S(xi − xν+1/2
p )
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Energy conservation and orbit averaging

ä Particle substepping breaks energy conservation.

ä Energy conservation theorem can be recovered by orbit averaging Ampère's law:

ε0∂tE + j = 〈j〉 ,
1

∆t

∫ t+∆t

t
dτ[· · · ]⇒ ε0

En+1− En

∆t
+ j̄ =

〈
j̄
〉

ä Orbit-averaged current is found as:

j̄ =
1

∆t

∫ t+∆t

t
dτ j ≈ 1

∆t ∑
p

Nν

∑
ν=1

qpvpS(x− xp)∆τν

ä With these de�nitions, exact energy conservation is recovered:

∑
p

∑
ν

mp

2
(vν+1

p + vν
p)(vν+1

p − vν
p) = −∑

i
ε0

En+1− En

∆t
En+1

i + En
i

2

⇒ ∑
p

1
2

mpv2
p + ∑

i

1
2

ε0E2
i = const.
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Exact charge conservation: charge-conserving particle mover

ä Local charge conservation (enforced in the continuum by Gauss' law) is violated in discrete

Vlasov-Ampère formulation.

ä Local charge conservation is essential to ensure long-term accuracy of numerical algorithm

ä Exact charge conservation requires a particle mover that satis�es a discrete charge continuity

equation, ∂tρ +∇ · j = 0 [Buneman 1968, Morse and Nielson, 1971]

ë Standard strategy based on current redistribution when particle crosses boundary.

ë In our context, current redistribution breaks energy conservation. Need new strategy.

Here, charge conservation is enforced by stopping particles at cell boundaries.

ρi+1
2
= ∑p qp

Sm(x−x
i+1

2
)

∆x

ji = ∑p qpvp
Sm−1(x−xi)

∆x

S′m(x) = Sm−1(x+∆x
2 )−Sm−1(x−∆x

2 )
∆x


(m=1,2)
=⇒ [∂tρ +∇ · j = 0]n+1

2
i+1

2
= 0
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Equivalence of VA and VP in the discrete form

ä Exact local charge conservation allows a strict equivalence between Vlasov-Ampere and

Vlasov-Poisson in the discrete:

Therefore, our approach is equivalent to an

exactly energy-conserving implicit Vlasov-Poisson formulation.

ä Properties of �equivalent� implicit Vlasov-Poisson:

ë No orbit-averaging is needed (charge density ρ is not orbit-averaged).

ë It remains exactly energy conserving (but one needs to accumulate orbit-averaged

current to check)

ä Why Vlasov-Ampere? Generalizes to the case with magnetic �elds!
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Momentum conservation: adaptive orbit integrator

ä EC/CC PIC algorithm does not enforce momentum conservation exactly.

ë Controlling error in momentum conservation is crucial for long-term accuracy

ä Orbit integration errors can signi�cantly a�ect momentum conservation: particle tunneling

ä Adaptive orbit integration can be e�ective in suppressing particle

tunneling and thus improve momentum conservation

ä Approach: �nd ∆τ to control local truncation error

‖l.e‖ =
qp∆τ2

2m

∥∥∥∥∥ E0
p

∂E
∂x

∣∣
pv0

p

∥∥∥∥∥+ H.O.T < ε0 + εr∆τ

∥∥∥∥∥ v0
p

qE0
p

m

∥∥∥∥∥
ä Electric �eld gradient is estimated from cell-based gradient:

∂E
∂x

∣∣
p ≈

Ei+1−Ei
∆x . Provides potential barrier!

ä Quadratic equation is solved for ∆τ.

ä Particle is stopped at cell boundaries to ensure charge conservation.
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Landau damping test

ä Periodic domain [0,1], Nx = 32
ä One-step energy-conserving (EC)

Crank-Nicolson solver

ä Single-species (electrons; cold uniform

ion background), Np = 4× 104

ä Initial condition:

f (x, v, t = 0) = f0[1 + α cos(kx)]

 1e-06

 1e-05

 0.0001

 0.001

 0  10  20  30  40  50

E
2
 (

a
.u

.)

t

∆t=0.1
explicit
implicit

analytical

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  10  20  30  40  50

E
2
 (

a
.u

.)

t

∆t=2
explicit
implicit

analytical

Luis Chacon, chaconl@ornl.gov



Two-stream test: impact of charge conservation

ä Periodic domain [0,1], Nx = 64
ä One-step EC Crank-Nicolson solver

ä Single-species (electrons), Np = 104

ä f (x, v, t = 0) = f0[1 + α cos(kx)]
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Ion acoustic wave (IAW): accuracy impact of di�erent EC movers
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IAW: explicit vs. implicit (accuracy)

ä Compare large-time-step implicit IAW vs explicit at CFL

ä Found that explicit at CFL was not as accurate as implicit with ∆t� ∆tCFL!!!
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ä CFL time-step is an �average� quantity (based on thermal velocity), and thus may still introduce

inaccuracies in fast particles.
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IAW: e�ect on nonlinear tolerance

ä Exact energy conservation of implicit mover only holds for exact nonlinear solve

ä It is of interest to understand robustness of mover when employing �nite nonlinear tolerances

1e-01

1e-03

1e-02K
i

1e-03

1e-02K
i

1e-03

1e-02K
i

0 0.5 1 1.5 2

t (x1000)

a.

im,cn,εt

1e-8
1e-6

b.

im,sub-cn,εt

1e-8
1e-6

c.

im,acc-cn,εt

1e-8
1e-6

Adaptive-CC mover is the most robust!
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Ion acoustic shock wave
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ä Propagating IAW with perturbation level ε = 0.4, with 4000 particles/cell.

ä Realistic mass ratio (mi/me = 2000).
ä Shock wave length scale∼Debye length.

Luis Chacon, chaconl@ornl.gov



CPU gain potential of implicit PIC vs. explicit PIC

ä Back-of-the-envelope estimate of CPU gain:

CPU ∼
(

T
∆t

)(
L

∆x

)d

npCsolver ;
Cimp

Cex ∼ NFE
∆timp

∆τimp
;

CPUex

CPUimp
∼
(

∆ximp

∆xex

)d ∆τimp

∆tex

1
NFE

ä Using reasonable estimates:
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Implementation of ACC particle mover on GPU architectures

ä Particle orbits are independent of each other ⇒ PIC algorithms are naturally data parallel.

....

Streaming Multiprocessor

threads

S
M

Nvidia GeForce GTX580 (Fermi)

i i+1

 Potential

   Particle

Potential
barrier

Adaptive

Non-adaptive

ä Potential performance killers for our implicit PIC ACC particle mover:

ë Particle motion is self-adaptive (orbit accuracy) ⇒workload imbalances.

ë Particles stop at cell boundaries (charge conservation) ⇒dynamic control �ows.
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Algorithm optimization on GPU: roo�ine model2
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2S. Williams, A. Waterman, and D. Patterson, Comm. ACM, 52 (94) 2009
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Optimization of ACC implicit particle mover

ä Computationally intensive �> compute-bounded (vs. explicit schemes, typically memory-bounded)

ä While loop introduces control �ow latencies and branch divergences.

ä Requires expensive operations (sqrt, division), atomicAdd (for moment accumulation)

Estimate sub-

time step 

Crank-Nicolson

update

Particle cell-

crossing

while(1){

    if(dtp==dt) break;

}

Quadratic equation (3 sqrt,/)           Split (rsqrt)

Picard iteration                                Direct sol. 

(simple fma, divergent branches)            (fast division)

or, Direct solution                         + correction

(/, no branches)

Quadratic equation (sqrt, /)             Newton's

                                                        method

load imbance due to                        Particle sort

variable number of sub steps          warp vote

per particle

Challenges                            Optimization
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Performance results porting from CPU to GPU (single precision)
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ä Straightforward GPU implementation accelerates ∼100 times;

ä Optimizations have larger e�ects on GPU; not all optimizations introduced are e�ective on CPU.

ä GPU-CPU speedup ∼ 200− 300, depending on algorithm (VA, VP)

Luis Chacon, chaconl@ornl.gov



Scaling CPU-to-GPU speedup with number of threads
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ä Hardware limit is 512 threads (=32 cores/SMx16 SM/GPU) running concurrently;

ä Large number of threads (�512) are useful to hide latencies.
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Sensitivity of GPU performance and e�ciency
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Δt 1.0 2.0 4.0 8.0 — — — — — — — 8.0
|E| 0.1 — — 0.1 0.3 0.5 0.7 0.9 — — — 0.9
Np 216 — — — — — — 216 217 218 219 220
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ä All operations including �oating, integer, and special functions are counted.

ä Varied E, ∆t, Np to test performance sensitivity

ë Performance is most sensitive to ∆t: more e�cient for large ∆t!
ä 300 to 400 GOps/s (20-30% e�ciency of GPU peak) are obtained for large time steps, strong

�elds and many particles.
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Summary and conclusions

ä We have demonstrated, for the �rst time, a fully implicit, fully nonlinear PIC formulation that

features:

ë Exact charge conservation (via a novel particle mover strategy).

ë Exact energy conservation (no particle self-heating or self-cooling).

ë Adaptive particle orbit integrator to control errors in momentum conservation.

ä Central to our implementation is the concept of particle enslavement, which eliminates particle

quantities as unknowns and a�ords us much freedom in the particle mover stage.

ä The approach has been shown to be free of CFL and �nite-grid numerical instabilities.

ä As a result, the method is able to take time steps many times larger than explicit, and resolutions

many times coarser.

ä The method has much potential for e�ciency gains vs. explicit, with the CPU speedup scaling as

(kλD)−d−1/NFE.

ä Key to realizing the potential of the approach is to minimize the number of nonlinear function

evaluations.

ë This, in turn, requires preconditioning, which will be the subject of future work.

ä We have ported the algorithm to GPU architectures (NVIDIA GeForce GTX 580)

ë 20-30% e�ciency of GPU peak (single precision)

ë 300× speedup over a single Intel(R) Xeon(R) CPU X5460 @ 3.16GHz (single precision)
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