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Motivation

Importance of plasma edge for tokamak fusion
Non-locality of plasma transport

XGC1

X-point included Gyrokinetic Code 1n realistic tokamak
geometry across magnetic separatrix
Full-f method

Utilizing extreme scale HPC
Scientific findings
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High T, at the central core is

needed for efficient fusion

power reactor 10,013”'39 NO0: 47543, 47545 47546

T, profile is stiff. | JET, Ti
High edge T, is critical for high T
core T..

T, cannot be high near the material
wall.

- H-mode pedestal

Edge determines the core
fusion condition: The tail wags ;
the dog. osf |
We need to understand these ; 5
edge pedestal physics and the ol e L
nonlocal core-edge interaction.
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XGCl1 finds that ITG turbulence can indeed invoke non-local
core-edge interaction in several ms.

Turbulence onset and propagation

Cold pulse experiment

Avalanche process anm
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Full-f whole volume simulation is
needed on extreme scale HPC 160

Realistic diverted geometry o
Non-local turbulence and
neoclassical transport together 80

T, profile evolution
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Full-f, X-point included Gyrokinetic Code 1n realistic tokamak
geometry across magnetic separatrix

Particle in cell method
Spatial simulation domain: whole tokamak plasma volume from
magnetic axis to wall, with realistic tokamak edge geometry and
Dirichlet wall boundary condition (grounded wall).
Field-line following unstructured triangular grid
Simulation size of production run :
~150K - 200K cores, 1 day
Number of particles ~ 20 Billions
Number of cells ~ 2 Millions (DIII-D, C-mod)
Particle per cell (grid node) ~ 10,000
Current capabilities: Electrostatic ion turbulence without scale-

separation, with heat source and conserving linear and non-linear
Coulomb collisions

Developing capabilities: Electromagnetic turbulence with kinetic
electrons.
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Magnetic separatrix is singular _
surface for core codes which use —

magnetic coordinate system. TN
To handle separatrix and X-point, TN\
XGC1 uses Cartesian coordinate i@\
system for particle pushing. WA

Equilibrium-B following,
unstructured triangular grid for
field solving.

Separatrx

X-point
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f1s 5D phase space particle distribution function

Marker particles can represent either full-f or of
of = fp , — 1,
calculates perturbed physics on fixed
assumes conservative system
Efficiency computing.
Easier to simulate, but the self-consistent self-organization
between mean and perturbed physics 1s missing.
Particle lost on the wall boundary is hardly described with of
method.
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Full-f:
Solve the 5D equation system without scale-separation between
the mean and the perturbed physics.
More difficult to simulate.
HPC 1s a necessity: Much higher # of particles
Only a few production codes in the world
XGC1 may be the only production code in the world, which can
handle realistic diverted geometry.
- Edge plasma 1n contact with material wall must be full-f (non-
equilibrium thermodynamics system).

* Particle noise does not grow with time.
—> Simply increase # of particles to control particle noise
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Mathematical model:

Particle time advance: ODE (Runge-Kutta and Predictor-
Corrector)

Poisson equation: PDE (FEM, Algebraic Multi-Grid, HYPRE +
PETSc)

Hybrid parallelization: MPI/OpenMP

Performance Optimization
Efficient particle-grid search
Dynamic load balancing of particles

Memory localization with multi-domain decomposition with
nearest-neighbor communication

Advanced Adaptive I/0 (ADIOS)
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300K particles/thread, 12 cores per node (P. Worley and PERI)

Seconds for 10 timesteps
(threads per process)
Nodes Cores | 1 Ix | 6 12
512 6144 | 186 | 142 | 106 | 138
1024 | 12288 | 204 | 153 | 106 | 123
2048 | 24576 | 232 | 173 | 109 | 120
4096 | 49152 | - 190 | 115 | 121
8192 | 98304 | - 185 | 117 | 126
12288 | 147456 | - - 117 | 140
16384 | 196608 | - 173 | 117 | 134
18624 | 223488 | - - 118 | 131

’.

“1x”: using only 8 cores per node, so problem size only 0.67 that of other data.
MPI-only not scaling well, and never competitive when using 6144 or more cores.
6-way OpenMP best performer in these experiments.
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300K particles/thread, 12 cores per node, 2 MPI processes per node

XGC1 performance

Cray XT5 (jaguarpf), ITER grid, 300K part./core

. . . [ 6000 ! . !

The efficient scalability 1is — Noway OpenttP, expt. C
. 5000 | —*— 6-way OpenMP, expt. B

preserved as we improve the —— &-way OpenhP, expt. A
algorithms toward more

extreme scale computing.

(E. D’Azevedo, M. Adams, P.
Worley, S. Klasky, etc; and
SciDAC PERI, TOPS, SDM) 1000 |
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Plotting number of particles processed per timestep per wallclock second.

Expt. A: May, 2009 version of XGC1

Expt. B: + a more efficient search technique for locating particle position in grid;
removing array syntax within OpenMP-parallelized loops that was degrading
OpenMP performance; thread-safe random number generation

Expt. C: + spline interpolation optimizations —> factor of two improvement
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12 cores per node, 2 MPIJprocesses per node

XGC1 performance on 3mm ITER grid

Cray XT5 (jaguarpf), 300K and 900K ptl/core, Full-f simulation
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XGC1 performance on 3mm ITER grid

Cray XT5 (jaguarpf), 300K and 900K ptl/core, Full-f simulation
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Efficiency relative to 6144 threads

XGC1 performance on 3mm ITER grid

Cray XT5 (jaguarpf), 300K and 900K ptl/core, Full-f simulation
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900K particles per thread problem is
more computationally intensive than
300K problem, which leads to a
somewhat higher particle push rate
(approx. 20%).

Performance scaling is excellent for

both problems.
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Fast I/O is a necessity
XGC1 with ADIOS 1.2 Adaptive I/O

o Restart file size of XGC1 >~ 2 TB.

» Without Adios (parallel HDF5), 2TB restart file was taking > l1hour for
every hour of run!
> Shift from slower to faster storage targets to manage external interference
> New methods (blue/Green): >50GB/s: takes ~ 1m for 2Tb restart file

XGC1 /O performance on a busy system

I/0 variability in new Adios 196.608
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Turbulence 1s generated at pedestal top and propagates into core plasma.

Ballistic inward propagation of turbulence from pedestal top at speed ~

Heat Flux per Particle (10_15 Jm/s)
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ITG turbulence in XGC1p (simple geometry version

of XGC1)

Strong cooling at the edge after the plasma reaches 20

quasi steady state.
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Local stiffness model X = Xyue + X, Ly /Ly =1) Hetg Jir -1
Local stiffness reflects the incoming cold pulse turbulence.
Higher heat conductivity due to incoming intensity pulse.
Speed of cold pulse ~= speed of intensity propagation
Nonlocal turbulence phenomena
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Numerical “Solomon Experiment:” Add torque to cancel intrinsic
rotation
Investigate property of ITG-driven residual stress (non-rotation driven)
Inward intensity pulse drives residual stress as well as heat flux.
Non-local transport phenomena for momentum transport
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XGCl1 1s full-f particle-in-cell code on realistic tokamak
geometry including separatrix and wall.
Scales efficiently to the maximal number of Jaguar cores
for scientific discovery runs.
Core-edge Non-local phenomena of turbulence transport
are observed 1n experiment and XGC1 simulation.
Near future capability:
Electromagnetic turbulence using full-f kinetic electrons in
edge.
Performance improvement:
GPGPU - to get ready for next generation HPC.
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